Find the value of P(x) = x^3-2x^2+3x+1 at x = 2- root 3.
Answers
Answered by
1
Step-by-step explanation:
Given:-
P(x) = x^3-2x^2+3x+1
To find:-
Find the value of P(x) = x^3-2x^2+3x+1
at x = 2- √3.
Solution:-
Given Cubic polynomial is x^3-2x^2+3x+1
P(x) = x^3-2x^2+3x+1
Put x = 2-√3 in the given P(x) then
=>P(2-√3)
=>(2-√3)^3 - 2(2-√3)^2 + 3(2-√3) + 1
We know that
(a-b)^3=a^3-3a^2b+3ab^2-b^3
(a-b)^2=a^2 - 2ab +b^2
(2-√3)^3
=2^3 -3(2)^2(√3)+3(2)(√3)^2-(√3)^3
=8-12√3+18-3√3
=26-15√3
(2-√3)^3= 26-15√3
(2-√3)^2
=2^2-2(2)(√3)+(√3)^2
=4-4√3+3
(2-√3)^2=7-4√3
now,
(2-√3)^3 - 2(2-√3)^2 + 3(2-√3) + 1
=(26-15√3)-2(7-4√3)+3(2-√3)+1
=> 26 -15√3 -14 + 8√3+6-3√3+1
=> (26-14+6+1) +(-15√3+8√3-3√3)
=> (33-14)+(8√3-18√3)
= (19) +(-10√3)
=> 19 -10√3
Answer:-
The value of P(x) at x=2-√3 for the given problem is 19 - 10√3
Similar questions