find the value of sin^2 41 + sin^2 49
Answers
Answered by
16
Here is your answer :-
sin²41 + sin²49 = ?
Solution ,
= sin²41 + sin²49
= sin²(90-49) + sin²49
= cos²49 + sin²49 ( sin²(90- theta) = cos² theta)
= 1
sin²41 + sin²49 = ?
Solution ,
= sin²41 + sin²49
= sin²(90-49) + sin²49
= cos²49 + sin²49 ( sin²(90- theta) = cos² theta)
= 1
Answered by
9
we know by quadrant that
sin (90-A) = cos A & cos (90-A) = sin A
so,
= sin^2 41 + sin^2 49
= sin^2 41 + cos^2 (90-41)
= sin^2 41 + cos^2 41
= 1
[ by trigonometric identity
sin^2 A + cos^2 A =1 ]
sin (90-A) = cos A & cos (90-A) = sin A
so,
= sin^2 41 + sin^2 49
= sin^2 41 + cos^2 (90-41)
= sin^2 41 + cos^2 41
= 1
[ by trigonometric identity
sin^2 A + cos^2 A =1 ]
Similar questions