find the value of sin^2 82 1/2 - sin^2 22 1/2
Answers
Sin ²(82•5) - sin ² (22.5)
sin ²A-sin²b=sin (a+b) sin
(a - b
=sin (82•5122•5) sin +82•5-•25
sin (105) sin
The value of sin² 82 1/2 - sin² 22 1/2 is equal to [ (3 +√3) /4√2 ].
Given:
sin² 82 1/2 - sin² 22 1/2
To find:
The value of sin² 82 1/2 - sin² 22 1/2
Solution:
Formula used:
From the trigonometric identities
sin²(A) - sin²(B) = [ sin(A + B) × sin(A - B) ]
Here 82 1/2 = 82.5 and 22 1/2 = 22.5°
Let A = 82.5° and B = 22.5°, then:
sin²(82.5°) - sin² (22.5°)
= [ sin(82.5° + 22.5°) × sin(82.5° - 22.5°) ]
= [ sin(105°) × sin(60°) ]
We know that
sin(105°) = sin(90 + 15°) = cos(15°)
sin(60°) = √3/2,
=> [ sin(105°) × sin(60°) ] = [ cos(15°) × √3/2 ]
The value of cos(15°) can be find as follows
=> cos (15°) = cos (45° - 30°) = cos (45°)cos(30°) + sin(45°)sin(30°)
= (1/√2 × √3/2) + (1/√2 × 1/2)
= (√3 + 1) / 2√2
Hence, cos (15°) = (√3 + 1) /2√2
Substitute this value into [ sin(75°) × √3/2 ]
= [ (√3 + 1) /2√2 × √3/2 ]
= [ (3 +√3) /4√2 ]
Therefore,
The value of sin² 82 1/2 - sin² 22 1/2 is equal to [ (3 +√3) /4√2 ].
Learn more at
https://brainly.in/question/2413791
#SPJ6