Find the value of sin 2x+ cos 4x
Answers
Answered by
13
Step-by-step explanation:
y=sin2(x)+cos4(x)————(1)y=sin2(x)+cos4(x)————(1)
=1−cos2(x)+cos4(x)=1−cos2(x)+cos4(x)
=1−cos2(x)(1−cos2(x))=1−cos2(x)(1−cos2(x))
=1−cos2(x)sin2(x)=1−cos2(x)sin2(x)
=1−4cos2(x)sin2(x)4=1−4cos2(x)sin2(x)4
=1−(2cos(x)sin(x))24=1−(2cos(x)sin(x))24
=1−sin2(2x)4————(2)=1−sin2(2x)4————(2)
As −1≤sin(2x)≤1−1≤sin(2x)≤1
⟹0≤sin2(2x)≤1⟹0≤sin2(2x)≤1
⟹0≤sin2(2x)4≤1
Answered by
3
Substituting cos²x = 1-sin²x in given expression, We get sin²x+(1-sin²x)² = sin²x + 1 -2sin²x +sin⁴x = 1 - sin²x + sin⁴x = 1 - sin²x(1-sin²x) = 1
Similar questions