Math, asked by adhitsaraf09, 7 hours ago

Find the value of sin 30° cos 60° + cos 30° sin 60° + sin 45° cos 45°.

Answers

Answered by SANDHIVA1974
1

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:sin30\degree \: cos60\degree + cos30\degree \: sin60\degree + sin45\degree \: cos45\degree

We know, From Trigonometric ratios of Standard angles, we have

\boxed{\tt{ sin30\degree =  \frac{1}{2} \: }}

\boxed{\tt{ sin60\degree =  \frac{ \sqrt{3} }{2} \: }}

\boxed{\tt{ cos30\degree =  \frac{ \sqrt{3} }{2} \: }}

\boxed{\tt{ cos60\degree =  \frac{1}{2} \: }}

\boxed{\tt{ cos45\degree = sin45\degree =  \frac{1}{ \sqrt{2} }}}

Now, On substituting the values in given expression, we get

 \rm \:  =  \: \dfrac{1}{2}  \times \dfrac{1}{2}  + \dfrac{ \sqrt{3} }{2}  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{ \sqrt{2} }

 \rm \:  =  \: \dfrac{1}{4}  + \dfrac{3}{4}  + \dfrac{1}{2}

 \rm \:  =  \: \dfrac{1 + 3 + 2}{4}

 \rm \:  =  \: \dfrac{6}{4}

 \rm \:  =  \: \dfrac{3}{2}

Hence,

\boxed{\tt{ sin30\degree cos60\degree + cos30\degree sin60\degree + sin45\degree cos45\degree =\frac{3}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions