Math, asked by mujju, 1 year ago

find the value of sin 75

Answers

Answered by Anonymous
19

sin75

=sin (30+45)

= sin30cos45 + cos30sin45

=(1/2)(1/√2) + (√3/2)(1/√2)

=1/2√2 + √3/2√2

=(1+√3)/2√2

Answered by HappiestWriter012
13
Hey there ! :))

We know that,

sin 30 = \frac{1}{2} \\ sin45 = \frac{1}{ \sqrt{2} }

Now,

sin75 = sin ( 30 + 45 )

= sin30 cos45 + sin45 cos30

= \frac{1}{2} \times \frac{1}{\sqrt2} + \frac{1}{\sqrt2} \times \frac{\sqrt3}{2} \:

= \frac{1}{2 \sqrt 2} + \frac{ \sqrt3}{2 \sqrt 2} \:

 = \frac{ \sqrt{3} + 1}{2 \sqrt{2} }


 \therefore sin 75 = \frac{ \sqrt{3} + 1}{2 \sqrt{2} }

Hope helped!
Similar questions