Math, asked by sai99riddhi, 2 months ago

Find the value of sin 75 degre and cos 75 degre​

Answers

Answered by sunprince0000
0

Answer:sin(75  

)=sin(45+30)  

 

= sin30 cos45 + sin45 cos30  

=  

2

1

​  

×  

2

​  

 

1

​  

+  

2

​  

 

1

​  

×  

2

3

​  

 

​  

 

=  

2  

2

​  

 

1

​  

+  

2  

2

​  

 

3

​  

 

​  

         

=  

2  

2

​  

 

1+  

3

​  

 

​  

   

Step-by-step explanation:

Answered by kamalakarkondury
1

Answer:

Answer: (√3 + 1)/ 2√2

Sin 75 we can write it as

Sin 75 = Sin(45+30)…………………..(1)

By applying the formula

Sin (A + B) = Sin A. Cos B + Cos A. Sin B

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30…………………..(2)

Sin Values

sin 0° = √(0/4) = 0

sin 30° = √(1/4) = ½

sin 45° = √(2/4) = 1/√2

sin 60° = √3/4 = √3/2

cos 90° = √(4/4) = 1

Cos Values

cos 0° = √(4/4) = 1

cos 30° = √(3/4) = √3/2

cos 45° = √(2/4) = 1/√2

cos 60° = √(1/4) = 1/2

cos 90° = √(0/4) = 0

Substitute the value of sin 30, sin 45, cos 30 and cos 45 degrees, then equation (2) will becomes

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30

Sin (45 + 30) = 1/√2 . √3/2 + 1/√2 . 1/2

Sin (45 + 30) = (√3 + 1) / 2√2

Hence the value of Sin 75 degree is equal to (√3 + 1) / 2√2.

Similar questions