Math, asked by sid2962, 1 year ago

find the value of sin (a+b),cos (a+b)and tan (a+b),given: sina=3/5,cosb=5/13, a and b in quadrant 1​

Answers

Answered by skh2
8

Given that :-

sinA = 3/5

CosB = 5/13

A and B lie in first quadrant.

This means that all the trigonometric Functions will be positive as A and B are in First Quadrant.

\rule{200}{2}

 \sin(a) =  \frac{3}{5} \\  \\  { \sin}^{2}a =  \frac{9}{25} \\  \\  \\ { \cosec}^{2}a =  \frac{25}{9} \\  \\  \\1 +  { \cot}^{2}a =  \frac{25}{9} \\  \\  \\ { \cot}^{2}a =  \frac{25}{9} - 1 =  \frac{16}{9} \\  \\  \\  \cot a = \pm{ \frac{4}{3}}

Since A is First Quadrant...

CotA = 4/3

Therefore :-

Tan A = 3/4

Now,

 \tan(a) =  \frac{3}{4} \\  \\ \frac{ \sin(a) }{ \cos(a)} =  \frac{3}{4} \\  \\  \\ \cos(a) =  \frac{4 \sin(a) }{3} \\  \\  \\ \cos(a) =  \frac{4 \times 3}{3 \times 5} =  \frac{4}{5}

\rule{200}{2}

 \cos(b) =  \frac{5}{13} \\  \\ { \cos}^{2}b =  \frac{25}{169} \\  \\  \\ { \sec}^{2}b =  \frac{169}{25} \\  \\  \\1 +  { \tan}^{2}b =  \frac{169}{25} \\  \\  \\ { \tan}^{2}b =  \frac{169}{25} - 1 =  \frac{144}{25} \\  \\  \\ \tan(b) =  \frac{12}{5} \\  \\ \ \frac{\sin(b)}{\cos(b)} =  \frac{12}{5} \\  \\ \sin(b) =  \frac{12}{5} \times  \frac{5}{13} =  \frac{12}{13}

\rule{200}{2}

We have got the value of sinA, sinB, cosA, cosB, tanA, tanB

 \rule{200}{2}

sin(A+B) = sinAcosB+cosAsinB

Solving :-

 (\frac{3}{5} \times \frac{5}{13}) + (\frac{4}{5} \times \frac{12}{13}) \\ \\ =  \frac{15 + 48}{65} =  \frac{63}{65}

cos(A+B) =cosAcosB-sinAsinB

 =  \frac{4}{5} \times \frac{5}{13} + \frac{3}{5} \times \frac{12}{13} \\  \\ = \frac{56}{65}

tan(A+B) =

 \frac{\frac{3}{4} + \frac{12}{5}}{1 -  \frac{9}{5}} \\  \\  \\ =  \frac{ - 63}{16}

\rule{200}{2}


sid2962: thanks boss
skh2: Welcome!! ^_^
Answered by Anonymous
0

Answer:

Step-by-step explanation:

Given that :-

sinA = 3/5

CosB = 5/13

A and B lie in first quadrant.

This means that all the trigonometric Functions will be positive as A and B are in First Quadrant.

Similar questions