find the value of sin suare24-sin square 6
Answers
sin²24 - sin²6
= (sin24 - sin6)(sin24 + sin6)
= (2cos15 sin9 )(2sin15 cos9)
= (2sin15cos15)(2sin9cos9)
= (sin30)(sin18)
= (1/2)sin18.
sin72 = 2sin36cos36 = 4sin18cos18.(1 - 2 sin² 18).
But sin72 = cos18 so
1 = 4sin18(1 - 2 sin² 18) = 4x(1 - 2x²)
where x = sin18.
8x^3 - 4x + 1 = 0.
x = 1/2 is an obvious root, so remove a factor of 2x-1 :
8x³ - 4x + 1 = (4x²)(2x-1) + 4x² - 4x + 1
= (4x²)(2x - 1) + 2x(2x - 1) - (2x - 1)
= (4x² + 2x - 1) (2x - 1) = 0.
Either x = 1/2 or
x = (1/8)(-2 +/- √(4 - 4*4*(-1)))
= (2/8)(-1 + √5)
because sin18 > 0 so we must take the + sign.
Therefore :
sin²(24) - sin² (6) = (1/2)sin18 = (1/8)(√5 - 1).
Answer:
Find the value of sin suare24-sin square 6.
Step-by-step explanation:
Solution♡
sin²24 - sin²6
= (sin24 - sin6)(sin24 + sin6)
= (2cos15 sin9 )(2sin15 cos9)
= (2sin15cos15)(2sin9cos9)
= (sin30)(sin18)
= (1/2)sin18.
sin72 = 2sin36cos36 = 4sin18cos18.(1 - 2 sin² 18).
But sin72 = cos18 so
1 = 4sin18(1 - 2 sin² 18) = 4x(1 - 2x²)
where x = sin18.
8x^3 - 4x + 1 = 0.
x = 1/2 is an obvious root, so remove a factor of 2x-1 :
8x³ - 4x + 1 = (4x²)(2x-1) + 4x² - 4x + 1
= (4x²)(2x - 1) + 2x(2x - 1) - (2x - 1)
= (4x² + 2x - 1) (2x - 1) = 0.
Either x = 1/2 or
x = (1/8)(-2 +/- √(4 - 4*4*(-1)))
= (2/8)(-1 + √5)
because sin18 > 0 so we must take the + sign.
Therefore :
sin²(24) - sin² (6) = (1/2)sin18 = (1/8)(√5 - 1).