Math, asked by yuvraj2002shbnna, 7 months ago



Find the value of
sin²-30⁰ + tan²-45⁰by
sec²23° + cot²-45⁰

Answers

Answered by romi2640
0

Answer:

The answer is 67/12

Given

\sf \: \dfrac{5 {cos}^{2}60 + 4 {sec}^{2}30 - {tan45}^{2} }{ {sin}^{2} 30 + {cos}^{2}30 }

sin

2

30+cos

2

30

5cos

2

60+4sec

2

30−tan45

2

NoTE

sin²∅ + cos²∅ = 1

tan45 = 1

cos60 = 1/2

sec60 = 2/√3

Now,

(Putting the values)

\begin{gathered} \longrightarrow \: \sf \: \dfrac{5 \times ( \frac{1}{2}) {}^{2} + 4 \times (\frac{2}{ \sqrt{3} }) {}^{2} - {1}^{2} }{1} \\ \\ \longrightarrow \: \sf \: 5 \times \dfrac{1}{4} + 4 \times \dfrac{4}{3} - 1 \\ \\ \longrightarrow \sf \: \dfrac{5}{4} + \dfrac{16}{3} - 1 \\ \\ \longrightarrow \: \sf \: \dfrac{15 + 64 - 12}{12} \\ \\ \longrightarrow \: \sf \: \dfrac{79 - 12}{12} \\ \\ \longrightarrow \sf \: \dfrac{67}{12} \end{gathered}

1

5×(

2

1

)

2

+4×(

3

2

)

2

−1

2

⟶5×

4

1

+4×

3

4

−1

4

5

+

3

16

−1

12

15+64−12

12

79−12

12

67

Thus,

\star \: \: \: \boxed{ \boxed{ \sf \: \dfrac{5 {cos}^{2}60 + 4 {sec}^{2}30 - {tan45}^{2} }{ {sin}^{2} 30 + {cos}^{2}30 } = \dfrac{67}{13} }}⋆

sin

2

30+cos

2

30

5cos

2

60+4sec

2

30−tan45

2

=

13

67

Similar questions