Find the value of tan15
Answers
Answer:
Step-by-step explanation:
Tan 15° = Tan(45 – 30)°
By the trigonometry formula, we know,
Tan (A – B) = (Tan A – Tan B) /(1 + Tan A Tan B)
Therefore, we can write,
tan(45 – 30)° = tan 45° – tan 30°/1+tan 45° tan 30°
Now putting the values of tan 45° and tan 30° from the table we get;
tan(45 – 30)° = (1 – 1/√3)/ (1 + 1.1/√3)
tan (15°) = √3 – 1/ √3 + 1
================================================================
Similarly, we can also find the value of tangent 15 degrees, by knowing the value of sin 15 and cos 15 degrees.
Tan (15°) = sin 15/cos 15
Tan 15° = sin 15/cos 15
Sin 15° = sin (45 – 30)° and cos 15 = cos (45 – 30)°
∴ tan (15°) = sin (45 – 30)° /cos (45 – 30)°
From the trigonometry formulas, we know,
sin(A – B) = sin A cos B – cos A sin B
and cos (A – B) = cos A cos B + sin A sin B
Therefore,
tan (15°)= (sin 45° cos 30° – cos 45° sin 30°)/ (cos 45° cos 30° + sin 45° sin 30°)
Putting the values of sin 30°, sin 45°, cos 30° and cos 45°, we get,
tan 15° = [(1/√2).(√3/2) – (1/√2).(½)] / [(1/√2).(√3/2) + (1/√2).(½)]
Solving the above equation we have,
tan 15° = √3 – 1/ √3 + 1
Hence, the value of tan (15°) is √3 – 1/√3 + 1.
For Further simplifying, we can rationalize and get 2-√3
Hope it Helped
Then Please mark as Brainliest
SOLUTION:-
First, we have to write the given angle 15° in terms of sum or difference of two standard angles.
So, we have 15° = 45° - 30°
tan15° = tan (45° - 30°)
tan15° = [tan45° - tan30°] / [1 + tan45° tan30°]
Using the above trigonometric ratio table, we have
tan15° = [1 - 1/√3] / [1 + 1x1/√3]
tan15° = [(√3 - 1)/√3] / [(√3 + 1)/√3]
tan15° = [(√3 - 1)/√3] x [(√3/(√3 + 1)]
tan15° = (√3 - 1) / (√3 + 1)
By rationalizing the denominator, we get
tan15° = 2 - √3
Hence, the value of tan15° is equal to 2 - √3
MORE TO KNOW
•sin (A + B) = sinA cosB + cosA sinB
•sin (A - B) = sinA cosB - cosA sinB
•cos (A + B) = cosA cosB - sinA cosB
•cos (A - B) = cosA cosB + sinA cosB
•tan (A + B) = [tanA + tanB] / [1 - tanA tanB]
•tan (A - B) = [tanA - tanB] / [1 + tanA tanB]