find the value of
tan20°+tan40°+root3tan20°tan40°
Answers
||✪✪ QUESTION ✪✪||
find the value of :- tan20°+tan40°+root3tan20°tan40° ?
|| ★★ FORMULA USED ★★ ||
- Tan(A+B) = [ (TanA + TanB) / ( 1 - TanA*TanB) ]
- Tan60° = √3
|| ✰✰ ANSWER ✰✰ ||
we can say that, Tan(60°) can be written as Tan(20°+40°) ...
→ Tan(20° + 40°)
Using above Told Formula now, Tan(A+B) = [ (TanA + TanB) / ( 1 - TanA*TanB) ] we get,
→ Tan(20° + 40°) = (Tan20° + Tan40°)/(1- Tan20° * Tan40°)
→ Tan(60°) = (Tan20° + Tan40°)/(1- Tan20° * Tan40°)
Cross - Multiply Now,
→ Tan60° - Tan60° * Tan20° * Tan40° = Tan20° + Tan40°
Putting Tan60° = √3 now,
→ √3 - √3 * Tan20° * Tan40° = Tan20° + Tan40°
Taking (-ve) part RHS, side now,
→ Tan20° + Tan40° + √3 * Tan20° * Tan40° = √3 (Ans).
_____________________
One More Nice Trigonometry Question :-
https://brainly.in/question/15877338?utm_source=android&utm_medium=share&utm_campaign=question
Answer:
Ans is root 3
Step-by-step explanation:
tan60=tan20+40
(tan20+tan40)/(1-tan20+tan40)
tan 60-tan60tan40/tan20+tan 40
=tan 20 +tan40+√3/tan20+tan40
=√3
.
.
.
.
hope this helps you
please
mark as brainliest
follow me