Math, asked by ishitareddy69, 4 months ago

find the value of tan45° + cot 30°​

Answers

Answered by swathisring
2

Step-by-step explanation:

Given : Expression \tan^245+\cot^230tan

2

45+cot

2

30

To find : The value of the expression ?

Solution :

Expression \tan^245+\cot^230tan

2

45+cot

2

30

We know the trigonometric values,

\tan45=1tan45=1 and \cot 30=\sqrt{3}cot30=

3

Substitute,

\tan^245+\cot^230=(\tan 30)^2+(\cot 45)^2tan

2

45+cot

2

30=(tan30)

2

+(cot45)

2

\tan^245+\cot^230=(1)^2+(\sqrt3)^2tan

2

45+cot

2

30=(1)

2

+(

3

)

2

\tan^245+\cot^230=1+3tan

2

45+cot

2

30=1+3

\tan^245+\cot^230=4tan

2

45+cot

2

30=4

Therefore, the value of the expression is \tan^245+\cot^230=4tan

2

45+cot

2

30=4

Answered by kavyasingh9565
2

i hope this is help you (◍•ᴗ•◍)❤

Attachments:
Similar questions