find the value of tan45° + cot 30°
Answers
Answered by
2
Step-by-step explanation:
Given : Expression \tan^245+\cot^230tan
2
45+cot
2
30
To find : The value of the expression ?
Solution :
Expression \tan^245+\cot^230tan
2
45+cot
2
30
We know the trigonometric values,
\tan45=1tan45=1 and \cot 30=\sqrt{3}cot30=
3
Substitute,
\tan^245+\cot^230=(\tan 30)^2+(\cot 45)^2tan
2
45+cot
2
30=(tan30)
2
+(cot45)
2
\tan^245+\cot^230=(1)^2+(\sqrt3)^2tan
2
45+cot
2
30=(1)
2
+(
3
)
2
\tan^245+\cot^230=1+3tan
2
45+cot
2
30=1+3
\tan^245+\cot^230=4tan
2
45+cot
2
30=4
Therefore, the value of the expression is \tan^245+\cot^230=4tan
2
45+cot
2
30=4
Answered by
2
i hope this is help you (◍•ᴗ•◍)❤
Attachments:
Similar questions