Math, asked by Hiisam1879, 1 year ago

Find the value of  4tan^{-1} \frac{1}{5}-tan^{-1}\frac{1}{239}

Answers

Answered by Shadmanashiq
4

4 {tan}^{ - 1} \frac{1}{5 }  - {tan}^{ - 1} \frac{1}{239}

 = 2 \times 2{tan}^{ - 1} \frac{1}{5}  - {tan}^{ - 1} \frac{1}{239}

 = 2 \times {tan}^{ - 1} \frac{ \frac{2 }{5} }{1 - ( { \frac{1}{5} )}^{2} }  - {tan}^{ - 1} \frac{1}{239}

We know, 2{tan}^{ - 1}x = {tan}^{ - 1} \frac{2x}{1 -  {x}^{2} }

 = 2{tan}^{ - 1} \frac{5}{12}  - {tan}^{ - 1} \frac{1}{239}

 = {tan}^{ - 1} \frac{2 \times  \frac{5}{12} }{1 - ( { \frac{5}{12}) }^{2} }  - {tan}^{ - 1} \frac{1}{239}

 = {tan}^{ - 1} \frac{120}{119}  - {tan}^{ - 1} \frac{1}{239}

 = {tan}^{ - 1} \frac{ \frac{120}{119} -  \frac{1}{239}}{1 + \frac{120}{119} \times  \frac{1}{239}  }

 = {tan}^{ - 1}1

 = \frac{\pi}{4}

Similar questions