find the value of
Answers
Tᴏ Fɪɴᴅ :-
→ [3 / (√5 + √2) ] + [ 7 / (√5 - √2) ]
Sᴏʟᴜᴛɪᴏɴ :-
→ [3 / (√5 + √2) ] + [ 7 / (√5 - √2) ]
Taking LCM we get,
→ [ 3(√5 - √2) + 7(√5 + √2) ] / [ (√5 + √2) (√5 - √2) ]
Using (a + b)(a - b) = a² - b² in Denominator now, we get,
→ [3√5 - 3√2 + 7√5 + 7√2 ] / [ (√5)² - (√2)² ]
→ [ 10√5 + 4√2 ] / ( 5 - 2 )
→ ( 10√5 + 4√2 ) / 3
Putting Given values of √5 = 2.236 & √2 = 1.414 , we get,
→ [ 10*2.236 + 4*1.414 ] / 3
→ ( 22.36 + 5.656 ) / 3
→ (28.016) / 3
→ 9.33867 (Ans.)
____________________
Lets Try it with Rationalizing the Both Terms Separately, & Than adding Them :-
→ [3 / (√5 + √2) ]
Rationalize
→ [3 / (√5 + √2) ] * [(√5 - √2) / (√5 - √2) ]
using (a + b)(a - b) = a² - b² in Denominator now, we get
→ [ 3(√5 - √2) ] / [ (√5)² - (√2)² ]
→ [ 3(√5 - √2) / ( 5 - 2) ]
→ [ 3(√5 - √2) / 3 ]
→ ( √5 - √2 )
Similarly, Rationalize the second part,
→ [ 7 / (√5 - √2) ]
Rationalize
→ [7 / (√5 - √2) ] * [(√5 + √2) / (√5 + √2) ]
using (a + b)(a - b) = a² - b² in Denominator now, we get
→ [ 7(√5 + √2) ] / [ (√5)² - (√2)² ]
→ [ 7(√5 + √2) / ( 5 - 2) ]
→ [ 7(√5 + √2) / 3 ]
Adding Both Parts now, we get,
→ ( √5 - √2 ) + [ 7(√5 + √2) / 3 ]
Taking LCM ,
→ [ 3(√5 - √2) + 7(√5 + √2 ] / 3
→ [ 3√5 - 3√2 + 7√5 + 7√2 ] / 3
→ [ 10√5 + 4√2 ] / 3
→ [ 10*2.236 + 4*1.414 ] / 3
→ ( 22.36 + 5.656 ) / 3
→ (28.016) / 3
→ 9.33867 (Ans.)
________________________
Solution
Given:-
- √5 = 2.236
- √2 = 1.414
Find:-
- 3/(√5 + √2) + 7/(√5 - √2)
Explanation
==> 3/(√5 + √2) + 7/(√5 - √2)
Rationalize Denominators of all terms
==> [ 3(√5 - √2)/(√5 + √2)(√5 - √2) ] + [ 7(√5 + √2)/(√5 - √2)(√5 + √2) ]
Using Formula
★ (x-y)(x+y) = (x² - y²)
Then,
==> [3(√5 - √2)/{(√5)² - (√2)²} ] + [ 7(√5 + √2)/{(√5)² - (√2)²} ]
==> 3(√5 - √2)/(5 - 2) + 7(√5 + √2)/(5 - 2)
==> 3(√5 - √2)/3 + 7(√5 + √2)/3
==> (√5 - √2) + 7/3 * (√5 + √2)
Keep value of √5 = 2.236 & √2 = 1.414
==> (2.236 - 1.414) + 7/3 * (2.236 + 1.414)
==> 0.822 + 7/3 * 3.650
==> 0.822 + 25.55/3
==> 0.822 + 8.517