Math, asked by Pranothi1, 1 year ago

Find the value of  \frac{sinA-sinB}{cosA+cosB} +  \frac{cosA-cosB}{sinA+sinB}

Answers

Answered by pankaj12je
1
Hey there  !!!!!!!!!!!!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=sinA-sinB/cosA+cosB  +  cosA-cosB/sinA+sinB

= (sinA-sinB)(sinA+sinB)+(cosA-cosB)(cosA+cosB)/(cosA+cosB)                                                                                                           (sinA+sinB)

using (a+b)(a-b) = a²-b²

 = sin²A-sin²B+cos²A-cos²B/(cosA+cosB)(sinA+sinB)

using sin²α+cos²α=1

= sin²A+cos²A-(sin²B+cos²B)/(cosA+cosB)(sinA+sinB)

= 1-1/(cosA+cosB)(sinA+sinB)

=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hope this helped you......


Pranothi1: Thanks again
pankaj12je: :)
Similar questions