Math, asked by sweetanalyise, 8 months ago

Find the value of :
\left[\begin{array}{ccc}1&2&3\\-4&3&6\\2&-7&9\end{array}\right].



DONT SPAM! ☺

Answers

Answered by AdorableMe
23

We must know :-

\sf{D=\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] }

\sf{\longrightarrow D=a_1 \left[\begin{array}{ccc}b_2&c_2\\b_3&c_3\end{array}\right] -b_1 \left[\begin{array}{ccc}a_2&c_2\\a_3&c_3\end{array}\right]+c_1 \left[\begin{array}{ccc}a_2&b_2\\a_3&b_3\end{array}\right]  }

\sf{\longrightarrow D=a_1(b_2c_3-b_3c_2)-b_1(a_2c_3-a_3c_2)+c_1((a_2b_3-a_3b_2)}

_____________________

Now, according to the given question :-

\sf{\left[\begin{array}{ccc}1&2&3\\-4&3&6\\2&-7&9\end{array}\right] }

\sf{ =1 \left[\begin{array}{ccc}3&6\\-7&9\end{array}\right] -2\left[\begin{array}{ccc}-4&6\\2&9\end{array}\right]+3 \left[\begin{array}{ccc}-4&3\\2&-7\end{array}\right]  }

\sf{=(27+42)-2(-36-12)+3(28-6)}

\sf{=69+96+66}

\sf{=231}

Therefore, the answer is 231.

Answered by Anonymous
13

according \:  to \:  the  \: given \:  question :- \\  \\ </p><p></p><p>\begin{gathered}\sf{[\begin{array}{ccc}1&amp;2&amp;3\\-4&amp;3&amp;6\\2&amp;-7&amp;9\end{array}] }\end{gathered} \\  \\ </p><p></p><p>\begin{gathered}\sf{ =1 [\begin{array}{ccc}3&amp;6\\-7&amp;9\end{array}] -2[\begin{array}{ccc}-4&amp;6\\2&amp;9\end{array}]+3 [\begin{array}{ccc}-4&amp;3\\2&amp;-7\end{array}] }\end{gathered} \\  \\ =1[3−769]−2[−4269]+3[−423−7] \\  \\ </p><p></p><p>\sf{=(27+42)-2(-36-12)+3(28-6)} \\  \\ =(27+42)−2(−36−12)+3(28−6) \\  \\ </p><p></p><p>\sf{=69+96+66 }\\  \\ </p><p></p><p>\sf{=231}</p><p></p><p>

Similar questions