Math, asked by Anonymous, 1 month ago

Find the value of
 \left |  \dfrac{  {| \overset -  z| ^{2}} }{z. \overset - z} \right|

Answers

Answered by mathdude500
4

Question :-

If z is a complex number, find the value of following :

 \sf \: \left | \dfrac{ {| \overset - z| ^{2}} }{z. \overset - z} \right|

\large\underline{\sf{Solution-}}

Given expression is to find the value of,

\rm :\longmapsto\:\left | \dfrac{ {| \overset - z| ^{2}} }{z. \overset - z} \right|

Since, z is a complex number.

Let assume that

\rm :\longmapsto\:z = x + iy

So,

\rm :\longmapsto\:\overset - z \:  =  \: x - iy

Consider,

 \red{\rm :\longmapsto\:z\overset - z}

\rm \:  =  \:(x + iy)(x - iy)

\rm \:  =  \: {x}^{2} -  {(iy)}^{2}

\rm \:  =  \: {x}^{2} -  {i}^{2}  {y}^{2}

As, we know

\boxed{ \tt{ \:  {i}^{2} =  -  \: 1 \: }}

So,

\rm \:  =  \: {x}^{2} +  {y}^{2}

\rm \implies\:\boxed{ \tt{ \: z\overset - z =  {x}^{2} +  {y}^{2} \: }}

Now, Consider

 \red{\rm :\longmapsto\: |\overset - z| \: }

\rm \:  =  \: |x  -  iy|

\rm \:  =  \: \sqrt{ {x}^{2}  +  {y}^{2} }

Thus,

\rm \implies\:\boxed{ \tt{ \:  { |\overset - z| }^{2}  =  {x}^{2}  +  {y}^{2}  \: }}

Now, Consider

 \red{\rm :\longmapsto\:\left | \dfrac{ {| \overset - z| ^{2}} }{z. \overset - z} \right|}

\rm \:  =  \: \left |\dfrac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} +  {y}^{2}  }  \right|

\rm \:  =  \:1

Thus,

\rm \implies\:\boxed{ \tt{ \: \left | \dfrac{ {| \overset - z| ^{2}} }{z. \overset - z} \right| = 1 \: }}

More to know :-

\boxed{ \tt{ \:  |z| =  |\overset - z| }}

\boxed{ \tt{ \: z\overset - z =  { |z| }^{2}  \: }}

\boxed{ \tt{ \: \overline{z_1 + z_2} \: = \overset - z_1 + \overset - z_2 }}

\boxed{ \tt{ \: \overline{z_1  -  z_2} \: = \overset - z_1  -  \overset - z_2 }}

\boxed{ \tt{ \: \overline{z_1  \times  z_2} \: = \overset - z_1  \times   \overset - z_2 }}

\boxed{ \tt{ \: \overline{z_1   \div   z_2} \: = \overset - z_1   \div  \overset - z_2 }}

\boxed{ \tt{ \:  |z_1z_2|  =  |z_1|  |z_2|  \: }}

Similar questions