Math, asked by sharanyalanka7, 1 month ago

Find the value of :-

\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}. If :-

\sf\dfrac{cos\alpha}{cos\beta}+\dfrac{sin\alpha}{sin\beta}= -1

Answers

Answered by mathdude500
39

\large\underline{\sf{Solution-}}

We have with us to find the value of

\red{\rm :\longmapsto\:\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}}

can be rewritten as

\rm  \: = \:\sf\dfrac{4cos^3\beta}{4cos\alpha}+\dfrac{4sin^3\beta}{4sin\alpha}

We know,

\red{\rm :\longmapsto\:cos3x =  {4cos}^{3}x - 3cosx} \\  \red{\rm :\longmapsto\:it \: means} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\    \red{\rm :\longmapsto\: {4cos}^{3}x = cos3x + 3cosx}

Also,

\red{\rm :\longmapsto\: {4sin}^{3}x = 3sinx - sin3x}

So, using this, we get

\rm  \:  = \:\sf\dfrac{cos3 \beta  + 3cos \beta }{4cos\alpha}+\dfrac{3sin \beta  - sin3 \beta }{4sin\alpha}

\rm  \:  = \:\dfrac{cos3 \beta sin \alpha  + 3cos \beta sin \alpha  + 3sin \beta cos \alpha  - sin3 \beta cos \alpha  }{4sin \alpha cos \alpha }

\rm  \:  = \:\dfrac{cos3 \beta sin \alpha- sin3 \beta cos \alpha  + 3(cos \beta sin \alpha  + sin \beta cos \alpha)}{2(2sin \alpha cos \alpha) }

We know,

 \boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

and

 \boxed{ \bf{ \: sin(x  -  y) = sinxcosy  -  sinycosx}}

and

 \boxed{ \bf{ \: sin2x = 2sinx \: cosx}}

So, using these,

\rm \:  =  \:\dfrac{sin( - 3\beta  +  \alpha ) + 3sin( \alpha  +  \beta )}{2sin2 \alpha }

\rm \:  =  \:\dfrac{sin( \alpha  -  3\beta )  - sin( \alpha  +  \beta ) + sin( \alpha  +  \beta )+ 3sin( \alpha  +  \beta )}{2sin2 \alpha }

\rm \:  =  \:\dfrac{2cos\bigg[\dfrac{ \alpha  -  3\beta  +  \alpha  +  \beta }{2} \bigg]sin\bigg[\dfrac{\alpha  -  3\beta  -  \alpha  -  \beta }{2} \bigg] + 4sin( \alpha  +  \beta )}{2sin2 \alpha }

\rm \:  =  \:\dfrac{2cos( \alpha  -  \beta )sin( - 2 \beta ) + 4sin( \alpha  +  \beta )}{2sin2 \alpha }

 \purple{\bf \:  =  \:\dfrac{ -  \: 2cos( \alpha  -  \beta )sin 2 \beta + 4sin( \alpha  +  \beta )}{2sin2 \alpha }  -  -  - (1)}

Now, Consider

\rm :\longmapsto\:\sf\dfrac{cos\alpha}{cos\beta}+\dfrac{sin\alpha}{sin\beta}= -1

\rm :\longmapsto\:\dfrac{cos \alpha sin \beta  + sin \alpha cos \beta }{sin \beta cos \beta } =  - 1

\rm :\longmapsto\:\dfrac{sin( \alpha   + \beta)  }{sin \beta cos \beta } =  - 1

\rm :\longmapsto\:sin( \alpha +   \beta ) = -  sin \beta cos \beta

\rm :\longmapsto\:2sin( \alpha +   \beta ) = - 2 sin \beta cos \beta

\rm :\longmapsto\:2sin( \alpha +   \beta ) = -  sin2 \beta

So, equation (1), can be rewritten as

\rm \:  =  \:\dfrac{  4\: cos( \alpha  -  \beta )sin( \alpha  +  \beta ) + 4sin( \alpha  +  \beta )}{2sin2 \alpha }

\rm \:  =  \:\dfrac{  (\: cos( \alpha  -  \beta ) + 1)4sin( \alpha  +  \beta )}{2sin2 \alpha }

 \purple{\bf \:  =  \:\dfrac{  2(\: cos( \alpha  -  \beta ) + 1)sin( \alpha  +  \beta )}{sin2 \alpha }  -  - (2)}

Now, we know that

\rm :\longmapsto\:sin2 \alpha  + sin2 \beta  = 2sin( \alpha +   \beta )cos( \alpha -   \beta )

\rm :\longmapsto\:sin2 \alpha  + sin2 \beta  =  - sin2 \beta cos( \alpha -   \beta )

\red{\bigg \{ \because \: - sin2 \beta  = 2sin( \alpha   + \beta ) \bigg \}}

\rm :\longmapsto\:sin2 \alpha  =  - sin2 \beta  - sin2 \beta cos( \alpha -   \beta )

\rm :\longmapsto\:sin2 \alpha  =  - sin2 \beta (1  +  cos( \alpha -   \beta ))

\bf :\longmapsto\:sin2 \alpha  = 2 sin( \alpha   +  \beta) (1  +  cos( \alpha -   \beta )) -  -  - (3)

\red{\bigg \{ \because \: - sin2 \beta  = 2sin( \alpha   + \beta ) \bigg \}}

On substituting equation (3) in (2), we get

\rm \:  =  \:\dfrac{  sin2 \alpha }{sin2 \alpha }

\rm \:  =  \:1

Hence,

\red{\bf :\longmapsto\:\bf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha} = 1}

Answered by INDnaman
0

Step-by-step explanation:

Solution−

We have with us to find the value of

\red{\rm :\longmapsto\:\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}}:⟼

cosα

cos

3

β

+

sinα

sin

3

β

can be rewritten as

\rm \: = \:\sf\dfrac{4cos^3\beta}{4cos\alpha}+\dfrac{4sin^3\beta}{4sin\alpha}=

4cosα

4cos

3

β

+

4sinα

4sin

3

β

We know,

\begin{gathered}\red{\rm :\longmapsto\:cos3x = {4cos}^{3}x - 3cosx} \\ \red{\rm :\longmapsto\:it \: means} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \red{\rm :\longmapsto\: {4cos}^{3}x = cos3x + 3cosx}\end{gathered}

:⟼cos3x=4cos

3

x−3cosx

:⟼itmeans

:⟼4cos

3

x=cos3x+3cosx

Also,

\red{\rm :\longmapsto\: {4sin}^{3}x = 3sinx - sin3x}:⟼4sin

3

x=3sinx−sin3x

So, using this, we get

\rm \: = \:\sf\dfrac{cos3 \beta + 3cos \beta }{4cos\alpha}+\dfrac{3sin \beta - sin3 \beta }{4sin\alpha}=

4cosα

cos3β+3cosβ

+

4sinα

3sinβ−sin3β

\rm \: = \:\dfrac{cos3 \beta sin \alpha + 3cos \beta sin \alpha + 3sin \beta cos \alpha - sin3 \beta cos \alpha }{4sin \alpha cos \alpha }=

4sinαcosα

cos3βsinα+3cosβsinα+3sinβcosα−sin3βcosα

\rm \: = \:\dfrac{cos3 \beta sin \alpha- sin3 \beta cos \alpha + 3(cos \beta sin \alpha + sin \beta cos \alpha)}{2(2sin \alpha cos \alpha) }

Similar questions