Find the value of :-
. If :-
Answers
We have with us to find the value of
can be rewritten as
We know,
Also,
So, using this, we get
We know,
and
and
So, using these,
Now, Consider
So, equation (1), can be rewritten as
Now, we know that
On substituting equation (3) in (2), we get
Hence,
Step-by-step explanation:
Solution−
We have with us to find the value of
\red{\rm :\longmapsto\:\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}}:⟼
cosα
cos
3
β
+
sinα
sin
3
β
can be rewritten as
\rm \: = \:\sf\dfrac{4cos^3\beta}{4cos\alpha}+\dfrac{4sin^3\beta}{4sin\alpha}=
4cosα
4cos
3
β
+
4sinα
4sin
3
β
We know,
\begin{gathered}\red{\rm :\longmapsto\:cos3x = {4cos}^{3}x - 3cosx} \\ \red{\rm :\longmapsto\:it \: means} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \red{\rm :\longmapsto\: {4cos}^{3}x = cos3x + 3cosx}\end{gathered}
:⟼cos3x=4cos
3
x−3cosx
:⟼itmeans
:⟼4cos
3
x=cos3x+3cosx
Also,
\red{\rm :\longmapsto\: {4sin}^{3}x = 3sinx - sin3x}:⟼4sin
3
x=3sinx−sin3x
So, using this, we get
\rm \: = \:\sf\dfrac{cos3 \beta + 3cos \beta }{4cos\alpha}+\dfrac{3sin \beta - sin3 \beta }{4sin\alpha}=
4cosα
cos3β+3cosβ
+
4sinα
3sinβ−sin3β
\rm \: = \:\dfrac{cos3 \beta sin \alpha + 3cos \beta sin \alpha + 3sin \beta cos \alpha - sin3 \beta cos \alpha }{4sin \alpha cos \alpha }=
4sinαcosα
cos3βsinα+3cosβsinα+3sinβcosα−sin3βcosα
\rm \: = \:\dfrac{cos3 \beta sin \alpha- sin3 \beta cos \alpha + 3(cos \beta sin \alpha + sin \beta cos \alpha)}{2(2sin \alpha cos \alpha) }