Math, asked by Anonymous, 1 month ago

Find the value of
 {sin}^{ - 1} (sin( -  \frac{\pi}{6} ))
✨Only mods or star users are allocated to answer​​​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given inverse Trigonometric function is

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg( - \dfrac{\pi}{6}  \bigg) \bigg)

We know,

 \boxed{ \bf{sin( - x) \: =  \:  -  \: sinx }}

So, using this,

\rm  \:  \:  = \:{sin}^{ - 1}  \bigg( - sin \bigg(\dfrac{\pi}{6}  \bigg) \bigg)

We know,

 \boxed{ \bf{sin^{ - 1} ( - x) \: =  \:  -  \: sin ^{ - 1} x }}

So, using this

\rm  \:  \:  =  - \:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{\pi}{6}  \bigg) \bigg)

Now, we further know that

 \boxed{ \bf{  {sin}^{ - 1} (sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2} , \: \dfrac{\pi}{2}  \bigg] \: }}

So, using this,

\rm \:  \:  =  \: -  \: \dfrac{\pi}{6}

Hence,

\bf\implies \:\:{sin}^{ - 1}  \bigg( sin \bigg( - \dfrac{\pi}{6}  \bigg) \bigg) =  -  \: \dfrac{\pi}{6}

Additional Information :-

Let us assume one more example.

Evaluate the following :-

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{7\pi}{6}  \bigg) \bigg)

We know,

 \boxed{ \bf{  {sin}^{ - 1} (sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2} , \: \dfrac{\pi}{2}  \bigg] \: }}

But

 \boxed{ \bf{ \dfrac{7\pi}{6}  \:  \:   \cancel \in \: \bigg[ - \dfrac{\pi}{2} , \: \dfrac{\pi}{2}  \bigg] \: }}

So,

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{7\pi}{6}  \bigg) \bigg)

can be rewritten as

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\pi + \dfrac{\pi}{6}  \bigg) \bigg)

\rm  \:  = \:\:{sin}^{ - 1}  \bigg( - sin \bigg(\dfrac{\pi}{6}  \bigg) \bigg)

\rm  \:  = \:\: -  \: {sin}^{ - 1}  \bigg(sin \bigg(\dfrac{\pi}{6}  \bigg) \bigg)

\rm \:  \:  =  \: -  \: \dfrac{\pi}{6}

Hence,

\bf\implies \:\:{sin}^{ - 1}  \bigg( sin \bigg( \dfrac{7\pi}{6}  \bigg) \bigg) =  -  \: \dfrac{\pi}{6}

Let take one more example

Evaluate the following :-

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{5\pi}{6}  \bigg) \bigg)

We know,

 \boxed{ \bf{  {sin}^{ - 1} (sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2} , \: \dfrac{\pi}{2}  \bigg] \: }}

But

 \boxed{ \bf{ \dfrac{5\pi}{6}  \:  \:   \cancel \in \: \bigg[ - \dfrac{\pi}{2} , \: \dfrac{\pi}{2}  \bigg] \: }}

So,

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{5\pi}{6}  \bigg) \bigg)

can be rewritten as

\rm :\longmapsto\:\:{sin}^{ - 1}  \bigg(sin \bigg(\pi  -  \dfrac{\pi}{6}  \bigg) \bigg)

\rm  \:  = \:\:{sin}^{ - 1}  \bigg(sin \bigg(\dfrac{\pi}{6}  \bigg) \bigg)

\rm \:  \:  =  \:  \: \dfrac{\pi}{6}

Hence,

\bf\implies \:\:{sin}^{ - 1}  \bigg( sin \bigg( \dfrac{5\pi}{6}  \bigg) \bigg) = \: \dfrac{\pi}{6}

Similar questions