Math, asked by sanskar6732, 4 months ago

Find the value of
 \sin  ^{4}  \alpha  -  \cos ^{4}  \alpha  =


Please help no scam ... no copy-paste from Google ❤❤​

Answers

Answered by Flaunt
34

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Identity used here :-

 =  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

 =  >{sin}^{4}  \alpha   -  {cos}^{4} \alpha

We can write 4 \: as  \:  {(2)}^{2}

 =  >  { {(sin}^{2} \alpha ) }^{2}  -  { {(cos \alpha )}^{2} }^{2}

 \bold{= ( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha )( {sin}^{2}  \alpha  -  {cos}^{2}  \alpha )}

∴ {sin}^{4}  \alpha   -  {cos}^{4} \alpha   \bold{= ( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha )( {sin}^{2}  \alpha  -  {cos}^{2}  \alpha )}

Other Identity related to this :

\bold{\boxed{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

\bold{\boxed{ {x}^{3}   +   {y}^{3}  =  {x}^{3}  +  {y}^{3}   + 3xy(x + y)}}

\bold{\boxed{(x + y)(x  + z) =  {x}^{2}  + (y+ z)x + yz}}

Answered by Anonymous
4

Answer:

hi who are you can you give your intro

Similar questions