Math, asked by anaghaadhithya64, 21 days ago

Find The value Of:
 \sqrt{46 +  \sqrt{5 +  \sqrt{4 +  \sqrt{144} } } }

Answers

Answered by Sanju1534
0

Answer:

 \sqrt{46 +  \sqrt{5 +  \sqrt{4 +  \sqrt{144} } } }

 \sqrt{46 +  \sqrt{5 +  \sqrt{4 +  \sqrt{12 \times 12} } } }

 \sqrt{46 +  \sqrt{5 +  \sqrt{4 + 12} } }

 \sqrt{46 +  \sqrt{5 +  \sqrt{16} } }

 \sqrt{46 +  \sqrt{5 +  \sqrt{4 \times 4} } }

 \sqrt{46 +  \sqrt{5 + 4} }

 \sqrt{46 +  \sqrt{9} }

 \sqrt{46 +  \sqrt{3 \times 3} }

 \sqrt{46 + 3}

 \sqrt{49}

 \sqrt{7 \times 7}

7

Ans. 7

Hope it helps.

Answered by masura8080
0
  • We have to evaluate the above expression by using the given data.

              Given data:- \sqrt{46+\sqrt{5+\sqrt{4+\sqrt{144}}}}.

              To find:- Value of above expression.

              Solution:-

  • To solve the above equation we will follow the BODMAS rule.
  • BODMAS is an order of mathematic operations.
  • BODMAS rule is to be followed while solving expressions in mathematics. It stands for,

      B= bracket

      O= order of power or rules

      D= division

      M= multiplication

      A= addition

      S=subtraction

     Therefore,

\begin{array}{l}=>\sqrt{46+\sqrt{5+\sqrt{4+\sqrt{144}}}} \\=>\sqrt{46+\sqrt{5+\sqrt{4+\sqrt{12 \times 12}}}} \\=>\sqrt{46+\sqrt{5+\sqrt{4+12}}} \\=>\sqrt{46+\sqrt{5+\sqrt{16}}} \\=>\sqrt{46+\sqrt{5+\sqrt{4 \times 4}}} \\=>\sqrt{46+\sqrt{9}} \\=>\sqrt{46+\sqrt{3 \times 3}} \\=>\sqrt{46+3} \\=>\sqrt{49} \\=>\sqrt{7 \times 7} \\=>7.\end{array}

 Hence we will get the value \sqrt{46+\sqrt{5+\sqrt{4+\sqrt{144}}}}=7.

Similar questions