Math, asked by pranita37, 1 year ago

find the value of
 \sqrt{ \frac{3  +   \sqrt{5} }{3 -  \sqrt{5} } }
if root5 =2.236

Answers

Answered by Anonymous
8
ASWER.

✦STEP BY STEP SOLUTION.




✦GIVEN



 \sqrt{ \frac{3 + \sqrt{5} }{3 - \sqrt{5} } }


✦STEP. 1


✦Rationalisation =>>>


 \sqrt{ \frac{3 +  \sqrt{5} }{3 -  \ \sqrt{5}  }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} } }


 \sqrt{ \frac{ {(3 +  \sqrt{5} )}^{2} }{ {3 }^{2} -  { (\sqrt{5}) }^{2}  } }




 \sqrt{ \frac{ {(3 +  \sqrt{5} )}^{2} }{9 - 5} }




 \sqrt{ \frac{ {(3 +  \sqrt{5} )}^{2} }{4} }



 \sqrt{ \frac{ {(3 +  \sqrt{5} )}^{2} }{2 \times 2} }




 \frac{ \sqrt{( {3 +  \sqrt{5} )}^{2} } }{2}



 \frac{3 +  \sqrt{5} }{2}


 \sqrt{5 }  = 2.236 \:  \: given



 =  >  \frac{3 + 2.236}{2}



 =  \frac{5.236}{2}



2.618




✦HENCE.
\sqrt{ \frac{3 + \sqrt{5} }{3 - \sqrt{5} } }  \\  = 2.618 \:  \: ans





pranita37: but the answer is 1.309
Similar questions