Math, asked by sri9877, 11 months ago

find the value of
(  {x}^{3}  - 3) \times ( {x}^{2}  + 1)
when x = -1

Answers

Answered by Brâiñlynêha
22

\huge\mathfrak{\underline{Solution:-}}

We have to find the value of

\sf \bullet (x{}^{3}-3)\times (x{}^{2}+1)\\ \\ \sf\bullet when x=(-1)

Now put the value of x

\sf\implies x{}^{2}-3\times x{}^{2}+1\\ \\ \sf\implies (-1){}^{3}-3\times (-1){}^{2}+1\\ \\ \sf\implies (-1)-3\times 1+1\\ \\ \sf\implies -4\times 2\\ \\ \sf\implies (-8)

\boxed{\sf{(x{}^{3}-3)\times( x{}^{2}-1)=(-8)}}

Answered by Anonymous
54

Answer:

\huge\mathfrak\red{Ello}

( {x}^{3}  - 3) \times  ( {x}^{2}  + 1) \\  \\ by \: putting \: value \: of \: x \: which \: is \: equal \: to \:  - 1 \\  \\ then \\  \\ ( { - 1}^{ 3 }  - 3) \times ( { - 1}^{2}  + 1) \\  \\(  - 1 - 3) \times ( 1 + 1)  \\ \\ - 4 \times 2 \\ \\   - 8

\huge\mathfrak\green{Thanks}

Similar questions