Math, asked by Mr7Seven, 10 months ago

Find the value of the expression​

Attachments:

Answers

Answered by Sharad001
80

Question :-

 \rm \: The \:  value  \: of  \:  \\  \to \: \blue{  \sqrt{8 + 2 \sqrt{ 8 + 2 \sqrt{8 + 2...... \infty} } } }

Answer :-

\green{ \boxed{ \red{  \sqrt{8 + 2 \sqrt{ 8 + 2 \sqrt{8 + 2...... \infty} } } } = 4}} \:

Step - by - step explanation :-

We have ,

 \mapsto \: \sqrt{8 + 2 \sqrt{ 8 + 2 \sqrt{8 + 2...... \infty} } }  \:  \\   \\  \sf \: let \:  \\  \mapsto \: x = \sqrt{8 + 2 \sqrt{ 8 + 2 \sqrt{8 + 2...... \infty} } }  \:  \\  \\ \sf \green{ we \: can \: write \: it }\:  \\  \\  \mapsto \: x = \sqrt{8 + 2 { x} }  \\  \\ \rm \red{ squaring \: on \: both \: sides} \\  \\  \mapsto \:  {x}^{2}  +   { \bigg \{\sqrt{8 + 2 {x} } \bigg \} }^{2}  \\  \\  \mapsto \:  {x}^{2}  = 8 + 2 {x}  \\  \\  \mapsto \:  {x}^{2}  - 2x - 8 = 0 \\  \\ \rm \red{ solve \: this \: quadratic }\: by \: splitting \: \\ \rm \pink{  the \: middle} \: term \\  \\  \mapsto   \:  {x}^{2}  - (4  - 2)x - 8 = 0 \\  \\  \mapsto \:  {x}^{2}  - 4x + 2x - 8 = 0 \\  \\  \mapsto \: x(x - 4) + 2(x - 4) = 0 \\  \\  \mapsto \: (x - 4)(x + 2) = 0 \\  \\  \star \sf \:  case \: (1) \: if \\  \\  \to  \:  x - 4 = 0 \\  \\  \to \:  \boxed{x = 4} \\  \\  \star \rm \:  case \: (2) \: if \\  \\  \to \: x + 2 = 0 \\  \\  \to \: x =  - 2 \\  \\ \rm this \: sum\: of \: \: numbers \: may \: or \: may \: not \\  \rm \: be \: negative \:  \\ \sf hence \:  \:   \\ \to \:  \boxed{ \:  x = 4} \\  \\ \green{ \boxed{ \red{  \sqrt{8 + 2 \sqrt{ 8 + 2 \sqrt{8 + 2...... \infty} } } } = 4}}

Similar questions