find the value of the integral of the greatest integer function of root 3 into tanx from 0 to π/3
Attachments:
Answers
Answered by
3
So for interval of
tan x lies in
now lies in
I denote greatest Integer function as y(x)
So y( ) will have values as 0,1,2,3 for particular corresponding intervals
[0,0],
(0,)
(,)
(,)
So now compute summation of integrals over all intervals
[tex] \int\limits^ \frac{\pi}{3} _0 {y( \sqrt{3} tan(x) )} \, dx = \\ \int\limits^ {tan^{-1}( \frac{1}{ \sqrt{3} } )} _0 {1} \, dx + \\ \int\limits^ {tan^{-1}( \frac{2}{ \sqrt{3} } )} _{tan^{-1}( \frac{1}{ \sqrt{3} } )} {2} \, dx + \\ \int\limits^ \frac{\pi}{3} _{tan^{-1}( \frac{2}{ \sqrt{3} } )} {3} \, dx = \\ tan^{-1}( \frac{1}{ \sqrt{3} } ) + 2tan^{-1}( \frac{2}{ \sqrt{3} } ) - 2tan^{-1}( \frac{1}{ \sqrt{3} } ) \\ \pi - 3tan^{-1}( \frac{2}{ \sqrt{3} } ) [/tex]
Answer is B)
tan x lies in
now lies in
I denote greatest Integer function as y(x)
So y( ) will have values as 0,1,2,3 for particular corresponding intervals
[0,0],
(0,)
(,)
(,)
So now compute summation of integrals over all intervals
[tex] \int\limits^ \frac{\pi}{3} _0 {y( \sqrt{3} tan(x) )} \, dx = \\ \int\limits^ {tan^{-1}( \frac{1}{ \sqrt{3} } )} _0 {1} \, dx + \\ \int\limits^ {tan^{-1}( \frac{2}{ \sqrt{3} } )} _{tan^{-1}( \frac{1}{ \sqrt{3} } )} {2} \, dx + \\ \int\limits^ \frac{\pi}{3} _{tan^{-1}( \frac{2}{ \sqrt{3} } )} {3} \, dx = \\ tan^{-1}( \frac{1}{ \sqrt{3} } ) + 2tan^{-1}( \frac{2}{ \sqrt{3} } ) - 2tan^{-1}( \frac{1}{ \sqrt{3} } ) \\ \pi - 3tan^{-1}( \frac{2}{ \sqrt{3} } ) [/tex]
Answer is B)
manitkapoor2:
Please mark this as best
Similar questions