Math, asked by Victor22, 1 year ago

find the value of the integral of the greatest integer function of root 3 into tanx from 0 to π/3

Attachments:

Answers

Answered by manitkapoor2
3
So for interval of [0, \frac{\pi}{3}]
tan x lies in [0,\sqrt{3} ]
now  \sqrt{3} tan(x) lies in [0,3]
I denote greatest Integer function as y(x)
So y(  \sqrt{3} tan(x) ) will have values as 0,1,2,3 for particular corresponding intervals
[0,0],
(0,tan^{-1}( \frac{1}{ \sqrt{3} } ))
(tan^{-1}( \frac{1}{ \sqrt{3} } ),tan^{-1}( \frac{2}{ \sqrt{3} } ))
(tan^{-1}( \frac{2}{ \sqrt{3} } ), \frac{\pi}{3})

So now compute summation of integrals over all intervals
[tex] \int\limits^ \frac{\pi}{3} _0 {y( \sqrt{3} tan(x) )} \, dx = \\ \int\limits^ {tan^{-1}( \frac{1}{ \sqrt{3} } )} _0 {1} \, dx + \\ \int\limits^ {tan^{-1}( \frac{2}{ \sqrt{3} } )} _{tan^{-1}( \frac{1}{ \sqrt{3} } )} {2} \, dx + \\ \int\limits^ \frac{\pi}{3} _{tan^{-1}( \frac{2}{ \sqrt{3} } )} {3} \, dx = \\ tan^{-1}( \frac{1}{ \sqrt{3} } ) + 2tan^{-1}( \frac{2}{ \sqrt{3} } ) - 2tan^{-1}( \frac{1}{ \sqrt{3} } ) \\ \pi - 3tan^{-1}( \frac{2}{ \sqrt{3} } ) [/tex]

= \pi - tan^{-1}( \frac{2}{ \sqrt{3} } ) - tan^{-1}( \frac{1}{ \sqrt{3} } ) =  \frac{5 \pi}{6} -  tan^{-1}( \frac{2}{ \sqrt{3} } )

Answer is B)




manitkapoor2: Please mark this as best
Similar questions