Math, asked by Harshly, 1 year ago

find the value of the missing variate for the following distribution whose mean is 10 variate (xi) 5, 7, 9, 11,---,15, 20 frequency(fi) 4, 4, 4, 7, 3, 2, 1

Answers

Answered by sriya1111
14

here is your answer
Attachments:
Answered by ashishks1912
4

The missing variate for the given distribution x is 13

Step-by-step explanation:

Given data for the following distribution is

Variate x_i       5, 7, 9, 11,---,15, 20

Frequencyf_i  4, 4, 4, 7, 3, 2, 1

And also given that mean=10

To find the missing variate :

Let x be the missing variate

x_i      f_i       x_if_i

5       4          20

7       4           28

9      4           36

11      7          77

x       3           3x

15     2         30

20     1        20

________________________

   \sum f_i=25   \sum x_if_i=211+3x

______________________

We know that Mean=\frac{\sum x_if_i}{\sum\f_i}

  • 10=\frac{211+3x}{25}
  • 10\times 25=211+3x
  • 250=211+3x
  • 250-211=3x
  • 39=3x
  • Rewritting the equation
  • 3x=39
  • x=\frac{39}{3}
  • =13
  • Therefore x=13

Therefore the missing variate x is 13

Similar questions