Math, asked by ananya4mahajan, 6 months ago

Find the value of
the one who will answer the first and correctly will get brainliest​

Attachments:

Answers

Answered by Sadhana4748
0

Answer:

(x -  \frac{1}{x} )(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{4} +  \frac{1}{ {x}^{4} } ) \\

using formula:

 {x}^{2}  -  {y}^{2}  = (x - y)(x + y)

solving:

(  {(x)}^{2}  -   { (\frac{1}{x}) }^{2} )( {x}^{2}  +   \frac{1}{ {x}^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } )  \\

(  {x}^{2}   -  \frac{1}{ {x}^{2} } )( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\

 ({ ({x}^{2} )}^{2}  -  { (\frac{1}{ {x}^{2} } )}^{2} )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\

( {x}^{4}  -  \frac{1}{ {x}^{4} } )( {x}^{4}  +   \frac{1}{ {x}^{4} }  ) \\

  { ({x}^{4} )}^{2}  -   {( \ \frac{1}{ {x}^{4} }) }^{2}  \\

 {x}^{8}  -  \frac{1}{ {x}^{8} }  \\

here is your answer..

Similar questions