Find the value of theta
Answers
Given: sin(θ + 36°) = cos(θ), where θ is acute angle.
To find: The value of theta (θ).
Solution:
Consider the equation;
⇒ sin(θ + 36°) = cos(θ)
⇒ sin(θ + 36°) = sin(90° - θ) [∵ cos(θ) = sin(90° - θ)]
⇒ θ + 36° = 90° - θ
⇒ θ + θ = 90° - 36°
⇒ 2θ = 54°
⇒ θ = 54°/2
⇒ θ = 27°
Hence, the value of theta is 27°.
Additional Information:
1. Relationship between sides and T-Ratios.
- sin(θ) = Height/Hypotenuse
- cos(θ) = Base/Hypotenuse
- tan(θ) = Height/Base
- cot(θ) = Base/Height
- sec(θ) = Hypotenuse/Base
- cosec(θ) = Hypotenuse/Height
2. Square formulae.
- sin²(θ) + cos²(θ) = 1
- 1 + tan²(θ) = sec²(θ)
- 1 + cot²(θ) = cosec²(θ)
3. Reciprocal Relationship.
- sin(θ) = 1/cosec(θ)
- cos(θ) = 1/sec(θ)
- tan(θ) = 1/cot(θ)
- cot(θ) = 1/tan(θ)
- sin(θ)/cos(θ) = 1/cot(θ)
- cos(θ)/sin(θ) = 1/tan(θ)
4. Trigonometric functions of multiple of angles.
- sin2(θ) = 2sin(θ)cos(θ)
- cos2(θ) = cos²(θ) - sin²(θ)
- cos2(θ) = 2cos²(θ) - 1
- cos2(θ) = 1 - sin²(θ)
- tan(θ) = 2tan(θ)/1 - tan²(θ)
5. Sign of Trigonometric ratios in Quadrants.
- sin (90° - θ) = cos(θ)
- cos (90° - θ) = sin(θ)
- tan (90° - θ) = cot(θ)
- csc (90° - θ) = sec(θ)
- sec (90° - θ) = csc(θ)
- cot (90° - θ) = tan(θ)
- sin (90° + θ) = cos(θ)
- cos (90° + θ) = -sin(θ)
- tan (90° + θ) = -cot(θ)
- csc (90° + θ) = sec(θ)
- sec (90° + θ) = -csc(θ)
- cot (90° + θ) = -tan(θ)
- sin (180° - θ) = sin(θ)
- cos (180° - θ) = -cos(θ)
- tan (180° - θ) = -tan(θ)
- csc (180° - θ) = csc(θ)
- sec (180° - θ) = -sec(θ)
- cot (180° - θ) = -cot(θ)
- sin (180° + θ) = -sin(θ)
- cos (180° + θ) = -cos(θ)
- tan (180° + θ) = tan(θ)
- csc (180° + θ) = -csc(θ)
- sec (180° + θ) = -sec(θ)
- cot (180° + θ) = cot(θ)
- sin (270° - θ) = -cos(θ)
- cos (270° - θ) = -sin(θ)
- tan (270° - θ) = cot(θ)
- csc (270° - θ) = -sec(θ)
- sec (270° - θ) = -csc(θ)
- cot (270° - θ) = tan(θ)
- sin (270° + θ) = -cos(θ)
- cos (270° + θ) = sin(θ)
- tan (270° + θ) = -cot(θ)
- csc (270° + θ) = -sec(θ)
- sec (270° + θ) = cos(θ)
- cot (270° + θ) = -tan(θ)
PROVIDED INFORMATION :-
if sin ( θ +36) = cos (θ) where is acute angle
QUESTION :-
Find the value of theta if sin ( θ +36) = cos (θ) where is acute angle
TO FIND :-
Find the value of theta = ?
SOLUTION :-
Find the condition :-
We have that,
sec θ . sin ( 36° + θ ) = 1
sin (36° +θ ) = cos θ
sin (36° +θ ) = sin (90° - θ )
(36° + θ ) = (90° - θ )
2θ = 54°
θ = 54 /2
θ = 27
The value of θ = 27°
ADDITIONAL INFORMATION :-
An angle that measures less than is called an acute angle.
An angle smaller than a right angle is less than is called an acute angle.