Math, asked by indramalsingh824143, 11 months ago

find the value of x​

Attachments:

Answers

Answered by amitkumar44481
5

AnsWer :

x = 100°

Required Concept :

  • Sin 20° = 2 Sin 10° . Cos 10°.

Solution :

We have, Ceva Theorem In trigonometry form.

Let angle ABP = y°.

Since, angle ABC = angle ACB = 50°

By Ceva theorem,

 \tt \dashrightarrow \sin(60)  \sin(10)  \sin(50 - y)  =  \sin(y)  \sin(20)  \sin(40)

 \tt \dashrightarrow \sin(60)  \sin(50 - y)  = 2[ \sin(40)  \cos(10)] \sin(y)

Now, Use

 \tt \dashrightarrow\sin(a)  \sin(60 - a)  \sin(60 + a)  =  \frac{1}{4}  \sin(3a)

We get, y = 20°.

So,

 \tt \dashrightarrow \angle x = 180 - (20 + 60)

 \tt \dashrightarrow \angle x =100 \degree

Therefore, the value of x be 100°.

Similar questions