Find the value of (x^2+1/x^2),if (x-1/x)=7
Answers
Answered by
1
Answer:
x²+1/x² = 51
Step-by-step explanation:
x²+1/x² = 51
Given x - 1/x = 7 ---(1)
We know the algebraic identity:
a²+b²-2ab = (a-b)²
Or
a²+b² = (a-b)²+2ab
Now,
x²+1/x²
= (x-1/x)²+2*x*(1/x)
= (x-1/x)²+2
= 7²+2 [ from (1)]
= 49+2
= 51
Therefore,
x²+1/x² = 51
Hope this helps....
Answered by
16
Given :-
- x - 1/x = 7
To find :-
- x² + 1/x²
Solution :-
- x - 1/x = 7
Squaring both side
→ (x - 1/x)² = (7)²
Apply identity : (a - b)² = a² + b² - 2ab
→ x² + 1/x² - 2 × x × 1/x = 49
→ x² + 1/x² - 2 = 49
→ x² + 1/x² = 49 + 2
→ x² + 1/x² = 51
Extra Information
- (a + b)² = a² + b² + 2ab
- a² - b² = (a + b)(a - b)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ = (a + b)(a² - ab + b²)
Similar questions