find the value of x^3 +y^3+z^3-3xyz.if x+y+z=15 and x^2+y^2+z^2= 51
Answers
Answer:
-540
Step-by-step explanation:
Given---> x+ y + z = 15 , x² + y²+ z² = 51
To find ---> Value of x³ + y³ + z³ - 3xyz
Solution---> ATQ , x + y + z = 15 , x² + y² + z² = 51
Now, x + y + z = 15
Squaring both sides we get
( x + y + z )² = ( 15 )²
=> x² + y² + z² + 2xy + 2yz + 2zx = 225
=>( x² + y² + z² ) + 2 (xy + yz + zx ) = 225
=> ( 51 ) + 2 (xy + yz + zx ) = 225
=> 2 ( xy + yz + zx ) = 225 - 51
=> 2 ( xy + yz + zx ) = 174
=> xy + yz + zx = 174 / 2
=> xy + yz + zx = 87
Now we find value of
x² + y² + z² - xy - yz - zx = (x² +y² +z²) - (xy+yz+zx)
= ( 51 ) - ( 87 )
= - 36
Now , x³ + y³ + z³ - 3xyz
= (x + y + z ) ( x² + y² + z² - xy - yz - zx )
= ( 15 ) ( - 36 )
= - 540