Find the value of x^3+ y^3 + z^3, if
x + y + z = 11, x^2 + y^2 + z^2 = 45 and xyz = 40
Answers
Answered by
1
Answer:
197
Step-by-step explanation:
put value of x= 5y= 2,z= 4
solve direct
x³+y³+z³= 125+64+8= 197 √√√
Answered by
4
Answer :-
Value of x³ + y³ + z³ is 197.
Explanation :-
Finding the value if xy + yz + xz
We know that
(x + y + z)² = x² + y² + z² + 2(xy + yz + xz)
Here
- x² + y² + z² = 45
- x + y + z = 11
By substituting the value in the identity
⇒ (11)² = 45 + 2(xy + yz + xz)
⇒ 121 = 45 + 2(xy + yz + xz)
⇒ 121 - 45 = 2(xy + yz + xz)
⇒ 76 = 2(xy + yz + xz)
⇒ 76/2 = xy + yz + xz
⇒ 38 = xy + yz + xz
⇒ xy + yz + xz = 38
Finding the value of x³ + y³ + z³
We know that
x³ + y³ + z³ - 3xyz = (x + y + z){x² + y² + z² - (xy + yz + xz)}
Here
- x + y + z = 11
- xyz = 40
- xy + yz + xz = 38
- x² + y² + z² = 45
By substituting the values in the identity
⇒ x³ + y³ + z³ - 3(40) = (11)(45 - 38)
⇒ x³ + y³ + z³ - 120 = 11(7)
⇒ x³ + y³ + z³ - 120 = 77
⇒ x³ + y³ + z³ = 77 + 120
⇒ x³ + y³ + z³ = 197
∴ the value of x³ + y³ + z³ is 197
Similar questions