Math, asked by sushmita0511, 1 year ago

find the value of x^4+9x^3+35x^2-x+164 ;if x=-5+4i​

Answers

Answered by hukam0685
14

Answer:

{x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 164 = 0 \\  \\ if \: x =  - 5 + 4i \\  \:

Step-by-step explanation:

We know that

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\

as according to the question

x =  - 5 + 4i \\  \\  {( - 5 + 4i)}^{2}  = 25 - 16 - 40i \\  \\  = 9 - 40i...eq1 \\  \\  \because \:  {i}^{2}  =  - 1 \\   \\  {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3 {x}^{2}y + 3x {y}^{2}  \\  \\  {( 4i - 5)}^{3}  = {(4i)}^{3}  -  {(5)}^{3}  - 3 {(4i)}^{2}(5) + 3(4i) {( - 5)}^{2} \\  \\  =  - 64i - 125 + 240 + 300i \\  \\  = 115 + 236i...eq2 \\  \\

 = (9 - 40i)(9 - 40i) \\  \\  =  {(9 - 40i)}^{2}  \\  \\  = 81 - 1600 - 720i \\  \\  =  - 1519 - 720i \: ...eq3 \\  \\

put the values from eq1,2 and 3 in

 {x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 164 \\  \\   = - 1519 - 720i + 9(115 + 236i) + 35(9 - 40i) - ( - 5 + 4i) + 164 \\  \\  =  - 1519 + 1035 + 315 + 5 + 164 + i( - 720 + 2124 - 1400 - 4) \\  \\  = 0 + i(0) \\  \\  = 0 \\  \\ {x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 164 = 0 \\  \\ if \: x =  - 5 + 4i \\  \\

Similar questions