Find the value of (x^4+y^4 ) and (x^2-y^2)^2, when x^2 + y^2 = 5 and xy = 2.
Answers
Answered by
12
GIVEN :-
- x² + y² = 5.
- xy = 2.
TO FIND :-
- value of x⁴ + y⁴.
- value of (x² - y²)².
SOLUTION :-
✮ x⁴ + y⁴,
➳ x² + y² = 5
On squaring both sides we get,
➳ (x² + y²)² = (5)²
➳ (x²)² + (y²)² + 2 × x² × y² = 25
➳ x⁴ + y⁴ + 2x²y² = 25
➳ x⁴ + y⁴ + 2(x × y)² = 25
➳ x⁴ + y⁴ + 2(2)² = 25
➳ x⁴ + y⁴ + 2 × 4 = 25
➳ x⁴ + y⁴ = 25 - 8
➳ x⁴ + y⁴ = 17.
✮ (x² - y²)²,
➵ (x² - y²)²
By using identity :- (a - b)² = a² + b² - 2ab.
➵ (x² - y²)² = (x²)² + (y²)² - 2x²y²
➵ (x² - y²)² = x⁴ + y⁴ - 2x²y²
➵ (x² - y²)² = 17 - 2(xy)²
➵ (x² - y²)² = 17 - 4
➵ (x² - y²)² = 13.
Answered by
89
Given
- x² + y² = 5 and xy = 2
We Find
- Value of (x^4 + y^4 ) and (x²- y²) ²
According to the question
▶ x² + y² = 5
On squaring, we get :-
= ( x² + y² )² + = (5)²
= (x²)² + (y²)² + 2 × x² × y² = 25
= x4 + x4 + 2(x × y)² = 25
= x4 + x4 + 2(2)² = 25
= x4 + x4 + 2 × 4 = 25
= x4 + x4 + 8 = 25
= x4 + x4 = 25 - 8
= x4 + x4 = 17
So, therefore x^4 + y^4 is 17
( Identity used :- (a - b)² = a² + b² - 2ab )
= (x² - y²)² = (x²)² + (y²)² - 2xy
= (x² - y²)² = x4 + y4 - 2xy
= (x² - y²)² = 17 - 4
= (x² - y²)² = 13
So, Therefore (x² - y²)² is 13
Similar questions