find the value of x and y from the equal ordered pairs :
( 2^x+y , 2^x-y) = (16 , 1)
Answers
Answered by
1
Answer:
x = 2 ; y = 2
Step-by-step explanation:
Given, ( 2^x + y , 2^ x - y ) = ( 16 , 1 )
This can be true only when 2^( x + y ) = 16 and 2^( x - y ) = 1
Therefore,
2^( x + y ) = 16 & 2^( x - y ) = 1
2^( x + y ) = 2^4 & 2^( x - y ) = 2^0
Comparing bases and powers:
⇒ x + y = 4 & x - y = 0
⇒ x + y = 4 & x = y
⇒ x + x = 4
⇒ 2x = 4 ⇒ x = 2
Hence,
x = y = 2
Similar questions
Accountancy,
4 months ago
Math,
4 months ago
Math,
4 months ago
Science,
8 months ago
Social Sciences,
8 months ago
Geography,
11 months ago