Math, asked by NeoEdge, 10 months ago

Find the value of X and Y in the given parallelogram.

Attachments:

Answers

Answered by PURNA9239
23

Answer:

THE OPPOSITE ANGLES OF A PARALLELOGRAM ARE EQUAL

6y = 120°

y = 120° / 6

y = 20°

ADJACENT ANGLES IN A PARALLELOGRAM ARE 180°

5x + 10° + 120° = 180°

5x + 130° = 180°

5x = 180° — 130°

5x = 150°

x = 150° / 5

x = 30°

Step-by-step explanation:

HOPE IT WILL HELP YOU

PLZZ MARK AS BRAINLIST

Answered by amankumaraman11
1

We Know,

 \text{Sum of adjacent angles of a  ||gm is 180°.}

 =  \bf =  > 5x + 10 + 6y = 180 \degree \\  \bf =  > \:  \:  \:  \:  \:  \:  \:  \:  5x + 6y = (180 - 10) \degree \\  \bf =  >  \:  \:  \:  \:  \:  \:  \:  \: 5x + 6y = 170\degree \:  \:  \:  \:  \:  \: .... \: (a)

Also,

 \text{The Opposite angles of a  ||gm are equal.}

 \bf.°.  \:  \:  \:  \:  \:  \:  \: 6y = 120 \\ \sf \:  \:  \:  \:  \:  \:  \:   =  > y =  \frac{120}{6}   =  \frac{ \cancel6 \times 20}{ \cancel6}  \\  \sf  \:  \:  \:  \:  \:  \:  \: =  > y = 20

Now,

Putting y in equation (a), we get,

 \sf{5x + 6y = 170} \\  \sf5x + 6(20) = 170 \\  \sf =  >  \:  \:  \:  \:  \:  \: 5x = 170 - 120 \\  \sf =  >  \:  \:  \:  \:  \: x =  \frac{170 - 120}{5}  \\  \\  \sf =  >  \:  \:  \:  \:  \:  \: x =  \frac{50}{2}   \:  \:  \: = 25

Hence,

 \boxed{ \boxed{ \bf  \huge x =  \red2 \red5 }}\\  \boxed{ \boxed{ \bf  \huge y = \red2\red0}}

Similar questions