Find the value of x and y in x+y=a+b and ax+by=a²-b²
Answers
Answer :
x = (a + b)(a - 2b) / (a - b)
y = b(a + b) / (a - b)
Solution :
★ Given equations :
• x + y = a + b ----------------(1)
• ax + by = a² - b² --------------(2)
★ To find :
• x = ?
• y = ?
Now ,
Multiplying eq-(1) by b , we have ;
=> b(x + y) = b(a + b)
=> bx + by = ab + b² -----------(3)
Now ,
Subtracting eq-(3) from (2) , we get ;
=> (ax + by) - (bx + by) = (a² - b²) - (ab + b²)
=> ax + by - bx - by = (a+b)(a-b) - b(a+b)
=> ax - bx = (a + b)(a - b - b)
=> x(a - b) = (a + b)(a - 2b)
=> x = (a + b)(a - 2b) / (a - b)
Now ,
Putting x = (a + b)(a - 2b) / (a - b) in eq-(1) ,
We get ;
=> x + y = a + b
=> y = (a + b) - x
=> y = (a + b) - (a + b)(a - 2b) / (a - b)
=> y = (a + b)•[ 1 - (a - 2b) / (a - b) ]
=> y = (a + b)•[ (a - b) - (a - 2b) ] / (a - b)
=> y = (a + b)•[ a - b - a + 2b ] / (a - b)
=> y = (a + b)•b / (a - b)
=> y = b(a + b) / (a - b)