Math, asked by kripakaur121, 1 year ago

Find the value of x and y using Cramer's rule:
3y = 3, 9x + 8y = 5x

Answers

Answered by AbhijithPrakash
3

Answer:

3y=3,\:9x+8y=5x\quad :\quad y=1,\:x=-2

Step-by-step explanation:

\begin{bmatrix}3y=3\\ 9x+8y=5x\end{bmatrix}

\mathrm{Isolate\:solutions}

\mathrm{Isolate\:solution}:\quad 3y=3

3y+0\cdot \:x=3

\mathrm{Isolate\:solution}:\quad 9x+8y=5x

8y+4x=0

\begin{bmatrix}3y+0\cdot \:x=3\\ 8y+4x=0\end{bmatrix}

\mathrm{Matrix\:of\:Coefficients}

M=\begin{pmatrix}3&0\\ 8&4\end{pmatrix}

\mathrm{Answers\:column}

\begin{pmatrix}3\\ 0\end{pmatrix}

\mathrm{Replace\:the\:}y\mathrm{-column\:values\:with\:the\:answer-column\:values}

M_y=\begin{pmatrix}3&0\\ 0&4\end{pmatrix}

\mathrm{Replace\:the\:}x\mathrm{-column\:values\:with\:the\:answer-column\:values}

M_x=\begin{pmatrix}3&3\\ 8&0\end{pmatrix}

D:

M=\begin{pmatrix}3&0\\ 8&4\end{pmatrix}

\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}\:=\:ad-bc

=3\cdot \:4-0\cdot \:8

=12

D_y

M_y=\begin{pmatrix}3&0\\ 0&4\end{pmatrix}

\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}\:=\:ad-bc

=3\cdot \:4-0\cdot \:0

=12

D_x

M_x=\begin{pmatrix}3&3\\ 8&0\end{pmatrix}

\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}\:=\:ad-bc

=3\cdot \:0-3\cdot \:8

=-24

\mathrm{Solve\:by\:using\:Cramer\:Rule}

x=\dfrac{D_x}{D},\:y=\dfrac{D_y}{D},\:z=\dfrac{D_z}{D}

D\:\mathrm{denotes\:the\:determinat}

y=\dfrac{D_y}{D}=\dfrac{12}{12}

\mathrm{Simplify}

y=1

x=\dfrac{D_x}{D}=\dfrac{-24}{12}

\mathrm{Simplify}

x=-2

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=1,\:x=-2

Attachments:
Similar questions