Math, asked by dharshinipanneer431, 9 months ago

Find the value of x .
cos x = 2 sin 45° cos 45° – sin 30°​

Answers

Answered by FIREBIRD
11

Step-by-step explanation:

We Have :-

 \cos(x)  = 2 \sin(45)  \cos(45)  -  \sin(30)

To Find :-

x

Solution :-

 we \: know \: that \\  \\  \\  \sin(45)  =  \dfrac{1}{ \sqrt{2} }  \\  \\  \\  \cos(45)  =  \dfrac{1}{  \sqrt{2}  }  \\  \\  \\  \cos(60)  =  \dfrac{1}{2}  \\  \\  \\  \sin(90)  = 1 \\  \\  \\ so \: now \: coming \: to \: the \: question \\  \\  \\ \cos(x)  = 2 \sin(45)  \cos(45)  -  \sin(30)   \\  \\  \\ there \: are \: 2 \: ways \: to \: do \: it  \\  \\  \\ 1 \: method \\  \\  \\ \cos(x)  = 2 \sin(45)  \cos(45)  -  \sin(30)  \\  \\  \\ putting \: the \: values \\  \\  \\  \cos(x)  = 2 \times  \dfrac{1}{ \sqrt{2} }  \times  \dfrac{1}{ \sqrt{2} }  -  \dfrac{1}{2}  \\  \\  \\  \cos(x)  =  \dfrac{2}{2}  -  \dfrac{1}{2}  \\  \\  \\  \cos(x)  = 1 -  \dfrac{1}{2}  \\  \\  \\  \cos(x)  =  \dfrac{2 - 1}{2}  \\  \\  \\  \cos(x)  =  \frac{1}{2}  \\  \\  \\ x = 60 \\  \\  \\ 2 \: method \\  \\  \\ using \: the \: identity \\  \\  \\ 2 \sin(x)  \cos(x)  =  \sin(2x) \\  \\  \\ we \: get \\  \\  \\  \cos(x)  =  \sin(2 \times 45)  -  \sin(30)  \\  \\  \\  \cos(x)  =  \sin(90)  -  \sin(30)  \\  \\  \\  \cos(x)  = 1 -  \dfrac{1}{2}  \\  \\  \\  \cos(x)  =  \dfrac{1}{2}  \\  \\  \\ x = 60

Answered by Aloi99
14

Given:-

Sin45°= \frac{1}{\sqrt{2}}

Cos45°= \frac{1}{\sqrt{2}}

Sin30°= \frac{1}{2}

To Find:-

The Value of x?

\rule{200}{3}

Proof:-

Cos x=2sin45°×cos45°-sin30°

★Putting in The Values★

→Cos x=2× \frac{1}{\sqrt{2}} × \frac{1}{\sqrt{2}} - \frac{1}{2}

→Cos x=2× \frac{1×1}{\sqrt{2}× \sqrt{2}} - \frac{1}{2}

→Cos x= \frac{2}{2} - \frac{1}{2}

→Cos x= \frac{2-1}{2}

→Cos x= \frac{1}{2}

[°•° Cos 60°= \frac{1}{2} ]

→Cos x=Cos 60

→x=60

\rule{200}{7}

Similar questions