Math, asked by dudomon, 1 year ago

find the value of x for which (4/9)^4 ×(4/9)^-7 =(4/9)^2x-1

Answers

Answered by pulakmath007
23

The value of x = - 1

Given :

\displaystyle \sf{  { \bigg( \frac{4}{9}  \bigg)}^{4}  \times  { \bigg( \frac{4}{9}  \bigg)}^{ - 7} ={ \bigg( \frac{4}{9}  \bigg)}^{2x - 1}   }

To find :

The value of x

Solution :

Step 1 of 2 :

Write down the given equation

The given equation is

\displaystyle \sf{  { \bigg( \frac{4}{9}  \bigg)}^{4}  \times  { \bigg( \frac{4}{9}  \bigg)}^{ - 7} ={ \bigg( \frac{4}{9}  \bigg)}^{2x - 1}   }

Step 2 of 2 :

Find the value of x

\displaystyle \sf{  { \bigg( \frac{4}{9}  \bigg)}^{4}  \times  { \bigg( \frac{4}{9}  \bigg)}^{ - 7} ={ \bigg( \frac{4}{9}  \bigg)}^{2x - 1}   }

\displaystyle \sf{ \implies  { \bigg( \frac{4}{9}  \bigg)}^{2x - 1}  =  {\bigg( \frac{4}{9}  \bigg)}^{4}  \times  { \bigg( \frac{4}{9}  \bigg)}^{ - 7}}

\displaystyle \sf{ \implies  { \bigg( \frac{4}{9}  \bigg)}^{2x - 1}  =  {\bigg( \frac{4}{9}  \bigg)}^{4 - 7}  }

\displaystyle \sf{ \implies  { \bigg( \frac{4}{9}  \bigg)}^{2x - 1}  =  {\bigg( \frac{4}{9}  \bigg)}^{ - 3}  }

Comparing both sides we get

\displaystyle \sf{   2x - 1 =  - 3  }

\displaystyle \sf{ \implies  2x =  - 3 + 1  }

\displaystyle \sf{ \implies  2x =  - 2  }

\displaystyle \sf{ \implies  x =  - 1  }

Hence the required value of x = - 1

Answered by amarkrgupta87
0

Answer:

THE ANSWER IS IN THE PICTURE

Attachments:
Similar questions