Math, asked by TacsuganSanchirry, 1 year ago

Find the value of x, if 1/2 x +1/2 x +1/2 x =3.

Answers

Answered by NANISH
0
if helped please mark brainliest answer.
Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

{ \bigstar \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

 \bf \underline{To\: find-} \\

† \sf{the\: value  \: of   \:  x = ?}

 \bf \underline{Solution-} \\

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

 \bf{Taking \: \:   \dfrac{1 \:  \: }{2^x}  \: Common }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }   (1 + 1 + 1)  = 3}

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }    \times 3 = 3}

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{3 \: }{ {2}^{x} }     = 3}

\textsf{By Cross multiplying}

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x} \times 3 = 3 }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x} \times \cancel{ 3}^{1}  = \cancel{ 3}^{1}  }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x}  = 1 }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x}  =  {2}^{0}  }

\textsf{On Comparing both Sides}

{  \:  \:  \:  \:  \:   : \implies \boxed{\:  \bf \:   \pink{x = 0}  }} \\  \\  \\

 \bf \underline{Verification-} \\

\small{  \small\:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

Putting x= 0

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{0} }  +  \dfrac{1 \: }{ { 2 }^{0} }  +  \cfrac{1 \: }{ {2}^{0} }  = 3}

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{1 }  +  \dfrac{1 \: }{ 1 }  +  \cfrac{1 \: }{ 1 }  = 3}

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  1 + 1 + 1  = 3}

\small{\small  \:  \:  \:  \:  \:   : \implies \:  \sf \:  3= 3 \:  \:_{ \mathfrak{ \green{verified}}}}\\\\

Similar questions