Math, asked by nalinisivakkumar6, 10 months ago

find the value of x if 2^x-7 * 5^x-4=1250 ​

Attachments:

Answers

Answered by shreygupta712000
1

Answer:

Step-by-step explanation:

Answered by Anonymous
4

Correct question:

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 1250}

Required answer:

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 1250}

\longrightarrow\rm{1250 = 2 * 5 * 5 * 5 * 5}

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 2^{1} \times 5^{4}}

ㅤ ㅤ

\longrightarrow\rm{x - 7 = 1}

Transposing 7 to the other the other side, we get:

\longrightarrow\rm{x = 7 + 1}

{\longrightarrow{\boxed{\rm{x = 8}}}}

Therefore, 8 is the required value of x in the given expression.

Similar questions