Math, asked by naman195814, 1 year ago

find the value of x if
625^{x} =  \frac{25}{5 ^{x} }

Answers

Answered by fiercespartan
4

Hey there!

First, let's simplify both the sides.

625 = 5⁴ ; 625ˣ = 5⁴ˣ

25 can be written as 5²; 5²/5ˣ = 5²⁻ˣ

a^n / a^m = a^(n-m)

We can now write this equation as:

5⁴ˣ = 5²⁻ˣ

Cancelling the bases, we get ( 4x = 2 - x )

Now, we will have to solve this.

5x = 2

x = 2 / 5


naman195814: please solve the above question
Answered by BrainlyPrince92
3

 \Large \mathfrak {\underline {\underline{ Solution : }}} \\  \\ \sf 625^{x} = \frac{25}{5 ^{x} }  \:  \:  \:  \: \\ \sf  {({5}^{4})}^{x}  =  \frac{ {5}^{2} }{ {5}^{x} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ {({x}^{a})} ^{b}  = x {}^{ab}  \} \\ \sf  {5}^{4x}  =  {5}^{ 2 - x}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \bigg \{ \frac{ {a}^{x} }{ {a}^{y} }  =  {a}^{x - y}  \bigg \} \\  \\  \textsf{With Same Base, the Power be equal} \\  \implies  \sf 4x = 2 - x \\ \implies  \sf 4x + x = 2 \\ \implies \sf x =  \frac{2}{5}

Similar questions