Math, asked by deepaklakra, 1 year ago

If |x-2| less than= 5 then x lies in the interval​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{|x-2|\,\leq\,5}

\underline{\textbf{To find:}}

\textsf{Solution set of the inequality}\;\mathsf{|x-2|\,\leq\,5}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{|x-2|\,\leq\,5}

\implies\mathsf{-5\,\leq\,x-2\,\leq\,5}

\textsf{Adding 2 through out,}

\mathsf{-5+2\,\leq\,x-2+2\,\leq\,5+2}

\mathsf{-3\,\leq\,x\,\leq\,7}

\implies\bf\,x\,\in\,[-3,7]

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{6cm}$\\\mathsf{If\;|x|\,\leq\,r,\;then\;-r\,\leq\,x\,\leq\,r}$\end{minipage}}

Answered by ravilaccs
0

Answer:

X lies in the interval \mathrm{x} \in[-3,7]

Step-by-step explanation:

Given:

$|x-2| \leq 5$

To find:

Solution set of the inequality $|x-2| \leq 5$

Solution:

Formula used:

$\text { If }|x| \leq r \text {, then }-r \leq x \leq r$

Consider,

$|x-2| \leq 5$

$\Longrightarrow-5 \leq x-2 \leq 5$

Adding 2 through out,

$$-5+2 \leq x-2+2 \leq 5+2$$

$$-3 \leq x \leq 7$$

$$\Longrightarrow \mathrm{x} \in[-3,7]$$

Similar questions