Math, asked by Anonymous, 3 months ago

Find the value of x in the below equation:

\sf \bigg(\dfrac{2x}{x-5}\bigg)^2-5\bigg(\dfrac{2x}{x-5}\bigg)-24=0

No spam please..!

Answers

Answered by Anonymous
8

Required Solution :-

\sf\bigg(\dfrac{2x}{x-5}\bigg)^2-5\bigg(\dfrac{2x}{x-5}\bigg)-24=0

Let's assume \sf \dfrac{2x}{x-5}\: be \:_y----(1.)

\leadsto\sf y^2-5y-24=0

Now middle term splitting::

\longmapsto\sf y^2-8y+3y-24=0

\longmapsto\sf y(y-8)+3(y-8)=0

\longmapsto\sf (y-8)(y+3)=0

So the value of y is 8 and -3.

Now substituting these values in equation (1.)

~For 8

\sf \dfrac{2x}{x-5}\:=\:y

\longmapsto\sf \dfrac{2x}{x-5}\:=\:8

By cross multiplication::

\longmapsto \sf 2x=8(x-5)

\longmapsto \sf 2x=8x-40

By transportation::

\longmapsto \sf 40=8x-2x

\longmapsto \sf 40=6x

\longmapsto \sf \dfrac{40}{6}=x

\longmapsto \boxed{\sf \dfrac{20}{3}=x}

~For -3

\sf \dfrac{2x}{x-5}\:=\:y

\sf \dfrac{2x}{x-5}\:=\:-3

By cross multiplication::

\longmapsto \sf 2x=-3(x-5)

\longmapsto \sf 2x=-3x+15

\longmapsto \sf 3x+2x=15

\longmapsto \sf 5x=15

\longmapsto \sf x=\dfrac{15}{5}

\longmapsto \boxed{\sf x=3}

So the required value of x are:-

\leadsto\sf x=3,\dfrac{20}{3}

Similar questions