Math, asked by AdriannaLerola, 2 months ago

Find the value of x in the following...give in step by step answer...spam will be reported...​

Attachments:

Answers

Answered by ahmedseum
2

Step-by-step explanation:

if you still have problem with my answer then text me

Attachments:
Answered by 12thpáìn
3

Given

  • { \bigstar \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

To Find

  • † \sf{Value  \: of   \:  x}

Solution

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

  •  \bf{Taking \: \:   \dfrac{1 \:  \: }{2^x}  \: Common }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }   (1 + 1 + 1)  = 3}

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }    \times 3 = 3}

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{3 \: }{ {2}^{x} }     = 3}

  • By Cross multiplying

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x} \times 3 = 3 }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x} \times \cancel{ 3}^{1}  = \cancel{ 3}^{1}  }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x}  = 1 }

{  \:  \:  \:  \:  \:   : \implies \:  \sf \:   {2}^{x}  =  {2}^{0}  }

  • On Comparing both Sides

{  \:  \:  \:  \:  \:   : \implies \boxed{\:  \bf \:   \pink{x = 0}  }} \\  \\  \\

Verification

\small{  \small\:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{x} }  +  \dfrac{1 \: }{ { 2 }^{x} }  +  \cfrac{1 \: }{ {2}^{x} }  = 3}

  • Putting x= 0

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{ {2}^{0} }  +  \dfrac{1 \: }{ { 2 }^{0} }  +  \cfrac{1 \: }{ {2}^{0} }  = 3}

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  \dfrac{1 \: }{1 }  +  \dfrac{1 \: }{ 1 }  +  \cfrac{1 \: }{ 1 }  = 3}

\small{ \small \:  \:  \:  \:  \:   : \implies \:  \sf \:  1 + 1 + 1  = 3}

\small{\small  \:  \:  \:  \:  \:   : \implies \:  \sf \:  3= 3 \:  \:_{ \mathfrak{ \green{verified}}}}\\\\

  • \small\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}  \: \underline{\bf{\blue{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc} \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n}  \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}  \\ \\ \sf{\bigstar( {a}^{m} ) ^{n} = {a}^{mn} }  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } \\\\ \sf\bigstar{a}^{0} = 1   \\  \\  \sf \bigstar \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} } \\   \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
Similar questions