find the value of x in this
Answers
Answer:
x° = 40°
Step-by-step explanation:
Given: Angle ACE = 130° ,
DC = DA = DB
Angle ABD = x°
To Find: x°
Solution:
>> Angle ACD + Angle ACE = 180° [Linear Pair]
>> Angle ACD + 130 = 180
>> Angle ACD = 180 - 130
>> Angle ACD = 50°
In ∆ADC:
>> DC = DA
>> Angle CAD = Angle ACD [Isosceles Triangle Property]
>> Angle CAD = 50°
In ∆ADC:
>> Angle ACD + Angle CAD + Angle ADC = 180° [Angle Sum Property]
>> 50 + 50 + Angle ADC = 180°
>> Angle ADC = 180 - 100
>> Angle ADC = 80°
>> Angle ADC + Angle ADB = 180° [Linear Pair]
>> 80 + Angle ADB = 180°
>> Angle ADB = 180 - 80
>> Angle ADB = 100°
In ∆ADB:
>> DA = DB
>> Angle ABD = Angle BAD [Isosceles Triangle Property]
In ∆ADB:
>> Angle ABD + Angle BAD + Angle ADB = 180° [Angle Sum Property]
>> Angle ABD + Angle ABD + 100 = 180
>> 2 Angle ABD + 100 = 180
>> 2 Angle ABD = 180 - 100
>> 2 Angle ABD = 80
>> Angle ABD = 80/2
>> Angle ABD = 40°
.°. x° = 40°
pls mark me as the brainlist....❤️
also pls follow me....