Math, asked by priyanshuraj0, 10 months ago

Find the value of x so that [( 2/5)^3 ]^2=(2/5)^(2x ).​

Answers

Answered by ItzKrinna
2

Step-by-step explanation:

 { {( \frac{2}{5} }^{3}) }^{2}  =  { \frac{2}{5} }^{2x} \\  \\ =  >   { \frac{2}{5} }^{6}  =  { \frac{2}{5} }^{2x}  \\  \\  =  > 6 = 2x \\  \\    =  > x =  \frac{6}{2 }  = 3

HOPE IT HELPS

Answered by ƦαíηвσωStαƦ
17

{\mathbf {\blue{S}{\underline{\underline{olution:-}}}}}

\mathfrak{\underline{AnswEr:-}}

  • The value of x = 3

\mathfrak{\underline{Given:-}}

 \: \: \: \: \: \: \: \sf {\Bigg[ \bigg( \dfrac{2}{5}\bigg)^3 \Bigg]^2 = \bigg(\dfrac{2}{5}\bigg)^{2x} }

\mathfrak{\underline{Need\:To\: Find:-}}

  • The value of x = ?

{\mathbf {\blue{E}{\underline{\underline{xplanation:-}}}}}

\sf {\Bigg[ \bigg( \dfrac{2}{5}\bigg)^3 \Bigg]^2 = \bigg(\dfrac{2}{5}\bigg)^{2x}} \\\\

\longrightarrow \sf {\bigg(\dfrac{2}{5}\bigg)^{3 \times 2} = \bigg(\dfrac{2}{5}\bigg)^{2x}} \\\\

\longrightarrow \sf {\bigg(\dfrac{2}{5}\bigg)^6 = \bigg(\dfrac{2}{5}\bigg)^{2x} } \\\\

Since bases are same, their exponents must be equal.

\:\:\:\:\dag\bf{\underline \green{ThereFore:-}}

\longrightarrow \sf {6x = 2x} \\\\

\longrightarrow \sf {x = \dfrac{6}{2} } \\\\

\longrightarrow \sf {x = 3} \\\\

\:\:\:\:\dag\bf{\underline{\underline \pink{Hence:-}}}

  • The value of x is 3.

\rule{200}{2}

Similar questions