find the value of x so that :- (4/5)^-2 /(-4/5)^-2=(1)^3x
Answers
The value of x in the given expression is 1
Therefore x=1
Step-by-step explanation:
Given expression is
To find the value of x in the given expression :
( using the properties and )
( using the property )
Equating the powers 3=3x
Therefore x=1
The value of x in the given expression is 1
Answer:
To find the value of x in the given expression :
\frac{(\frac{4}{5})^{-2}}{(\frac{-4}{5})^{-2}}=(1)^{3x}
(
5
−4
)
−2
(
5
4
)
−2
=(1)
3x
\frac{\frac{4^{-2}}{5^{-2}}}{\frac{-4^{-2}}{5^{-2}}}=(1)^{3x}
5
−2
−4
−2
5
−2
4
−2
=(1)
3x
\frac{4^{-2}}{5^{-2}}\times \frac{5^{-2}}{-4^{-2}}=(1)^{3x}
5
−2
4
−2
×
−4
−2
5
−2
=(1)
3x
( using the properties a^{-m}=\frac{1}{a^m}} and \frac{1}{a^{-m}}=a^m
a
−m
1
=a
m
)
\frac{5^2}{4^2}\times \frac{(-4)^2}{5^2}=(1)^{3x}
4
2
5
2
×
5
2
(−4)
2
=(1)
3x
( using the property (-a)^2=a^2(−a)
2
=a
2
)
\frac{5^2}{4^2}\times \frac{4^2}{5^2}=(1)^{3x}
4
2
5
2
×
5
2
4
2
=(1)
3x
1=(1)^{3x}1=(1)
3x
(1)^3=(1)^{3x}(1)
3
=(1)
3x
Equating the powers 3=3x
x=\frac{3}{3}x=
3
3
Therefore x=1
The value of x in the given expression is 1