Math, asked by nutan56, 1 year ago

find the value of x so that :- (4/5)^-2 /(-4/5)^-2=(1)^3x

Answers

Answered by ashishks1912
6

The value of x in the given expression is 1

Therefore x=1

Step-by-step explanation:

Given expression is  \frac{(\frac{4}{5})^{-2}}{(\frac{-4}{5})^{-2}}=(1)^{3x}

To find the value of x in the given expression :

 \frac{(\frac{4}{5})^{-2}}{(\frac{-4}{5})^{-2}}=(1)^{3x}

\frac{\frac{4^{-2}}{5^{-2}}}{\frac{-4^{-2}}{5^{-2}}}=(1)^{3x}

\frac{4^{-2}}{5^{-2}}\times \frac{5^{-2}}{-4^{-2}}=(1)^{3x}   ( using the properties a^{-m}=\frac{1}{a^m}} and \frac{1}{a^{-m}}=a^m )

\frac{5^2}{4^2}\times \frac{(-4)^2}{5^2}=(1)^{3x} ( using the property (-a)^2=a^2 )

\frac{5^2}{4^2}\times \frac{4^2}{5^2}=(1)^{3x}

1=(1)^{3x}

(1)^3=(1)^{3x}

Equating the powers 3=3x

x=\frac{3}{3}

Therefore x=1

The value of x in the given expression is 1

Answered by bholeshankar112000
4

Answer:

To find the value of x in the given expression :

\frac{(\frac{4}{5})^{-2}}{(\frac{-4}{5})^{-2}}=(1)^{3x}

(

5

−4

)

−2

(

5

4

)

−2

=(1)

3x

\frac{\frac{4^{-2}}{5^{-2}}}{\frac{-4^{-2}}{5^{-2}}}=(1)^{3x}

5

−2

−4

−2

5

−2

4

−2

=(1)

3x

\frac{4^{-2}}{5^{-2}}\times \frac{5^{-2}}{-4^{-2}}=(1)^{3x}

5

−2

4

−2

×

−4

−2

5

−2

=(1)

3x

( using the properties a^{-m}=\frac{1}{a^m}} and \frac{1}{a^{-m}}=a^m

a

−m

1

=a

m

)

\frac{5^2}{4^2}\times \frac{(-4)^2}{5^2}=(1)^{3x}

4

2

5

2

×

5

2

(−4)

2

=(1)

3x

( using the property (-a)^2=a^2(−a)

2

=a

2

)

\frac{5^2}{4^2}\times \frac{4^2}{5^2}=(1)^{3x}

4

2

5

2

×

5

2

4

2

=(1)

3x

1=(1)^{3x}1=(1)

3x

(1)^3=(1)^{3x}(1)

3

=(1)

3x

Equating the powers 3=3x

x=\frac{3}{3}x=

3

3

Therefore x=1

The value of x in the given expression is 1

Similar questions